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Definitions and Terminology

A rectangulation R is a partition of a rectangle R into a
finite number of rectangles such that there are no + joints.
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Definitions and Terminology

A rectangulation R is a partition of a rectangle R into a
finite number of rectangles such that there are no + joints.

The size of R is the number of interior rectangles.

A segment in R is a maximal union of rectangle edges
which form a straight line (and not an edge of R).
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Definitions and Terminology

Within R, two rectangles are left/right neighbors if they are
seperated by a single vertical segment.
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Rectangle r is left of rectangle s if they are part of a
sequence of left/right neighbors.



2 - 6

Definitions and Terminology

Within R, rectangles r and s are left/right neighbors if they
are seperated by a single vertical segment.

Rectangle r is left of rectangle s if they are part of a
sequence of left/right neighbors.

Top/bottom neighbors and above/below relations are
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Definitions and Terminology

Within R, rectangles r and s are left/right neighbors if they
are seperated by a single vertical segment.

Rectangle r is left of rectangle s if they are part of a
sequence of left/right neighbors.

Rectangulations are weakly equivalent if they preserve
left/right and above/below relations.

They are strongly equivalent if they also preserve contact
between rectangles.

Top/bottom neighbors and above/below relations are
defined analagously.
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Definitions and Terminology

An integer sequence s = (s1, s2, . . . , sn) is called an
inversion sequence if for all 1 ≤ i ≤ n, we have
0 ≤ si ≤ i− 1.
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Definitions and Terminology

An integer sequence s = (s1, s2, . . . , sn) is called an
inversion sequence if for all 1 ≤ i ≤ n, we have
0 ≤ si ≤ i− 1.

There is a bijection between permutations and inversion
sequences.
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Definitions and Terminology

An integer sequence s = (s1, s2, . . . , sn) is called an
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0 ≤ si ≤ i− 1.

There is a bijection between permutations and inversion
sequences.
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Definitions and Terminology

An integer sequence s = (s1, s2, . . . , sn) is called an
inversion sequence if for all 1 ≤ i ≤ n, we have
0 ≤ si ≤ i− 1.

There is a bijection between permutations and inversion
sequences.
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Definitions and Terminology

An integer sequence s = (s1, s2, . . . , sn) is called an
inversion sequence if for all 1 ≤ i ≤ n, we have
0 ≤ si ≤ i− 1.

There is a bijection between permutations and inversion
sequences.
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Definitions and Terminology

An integer sequence s = (s1, s2, . . . , sn) is called an
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Definitions and Terminology

An integer sequence s = (s1, s2, . . . , sn) is called an
inversion sequence if for all 1 ≤ i ≤ n, we have
0 ≤ si ≤ i− 1.

There is a bijection between permutations and inversion
sequences.
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Definitions and Terminology

An integer sequence s = (s1, s2, . . . , sn) is called an
inversion sequence if for all 1 ≤ i ≤ n, we have
0 ≤ si ≤ i− 1.

There is a bijection between permutations and inversion
sequences.

0 1 1 0 2 5

125 3 6 4



2 - 24
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13An integer sequence s = (s1, s2, . . . , sn) is called an
inversion sequence if for all 1 ≤ i ≤ n, we have
0 ≤ si ≤ i− 1.

We say s contains a pattern t if there is a
subsequence of s which is order isomophic to t.

If s does not contain t, then we say that s avoids t.
Denote by In(L) the set of inversion sequences of
length n which avoid all of the patterns in L.

There is a bijection between permutations and inversion
sequences.
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Definitions and Terminology

A rectangulation R avoids ⊤ if it does not contain a ⊤
joint. Avoiding ⊢, ⊣, and ⊥ are defined analagously.
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Definitions and Terminology

A rectangulation R avoids ⊤ if it does not contain a ⊤
joint. Avoiding ⊢, ⊣, and ⊥ are defined analagously.

Systematic study of pattern avoidance in rectangulations
was started by Merino and Mütze (2021), several models
were solved by Asinowski and Banderier (2023).

Let L be a set of rectangulation patterns and denote by
Rw

n (L) and Rs
n(L) the set of weak and, respectively, strong

rectangulations of size n that avoid all patterns in L.

Our results cover all the (essentially different) cases where
L ⊆ {⊤,⊥,⊢,⊣}.
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|Rw
n (⊤)| = Cn (Williams)

Proof: Bijection to Dyck paths via non-decreasing inversion sequences
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|Rs
n(⊤)| = |In(010, 101, 120, 201)|, OEIS A279555 (Asinowski and P)

In(010, 101, 120, 201) In(010, 100, 120, 210)In(010, 110, 120, 210)
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|Rs
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|Rs
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|Rs
n(⊤)| = |In(010, 101, 120, 201)|, OEIS A279555 (Asinowski and P)

0, 0, 0, 0, 4, 4, 3, 1, 6, 9,1, 1, 9, 8, 8

Proof: Bijection to inversion sequences

First geometric interpretation of sequence, sequence previously appeared in paper examining pattern
avoidance in inversion sequences from Megan Martinez and Carla Savage (2018).
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I(010, 101, 120, 201), I(011, 201), and ⊤−avoiding rectangulations

Theorem (Martinez & Savage 2018, Callan & Mansour 2023, Asinowski & P 2025)

I(010, 101, 120, 201), I(010, 100, 120, 210), I(010, 110, 120, 210), and ⊤−avoiding rectangulations
are all enumerated by A279555.
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I(010, 101, 120, 201), I(011, 201), and ⊤−avoiding rectangulations

Theorem (Martinez & Savage 2018, Callan & Mansour 2023, Asinowski & P 2025)

I(010, 101, 120, 201), I(010, 100, 120, 210), I(010, 110, 120, 210), and ⊤−avoiding rectangulations
are all enumerated by A279555.

Conjecture (Yan & Lin 2020, Callan & Mansour 2023, Pantone 2024)

I(011, 201) and I(011, 210) are also enumerated by A279555.
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Generating trees for I(010, 101, 120, 201) and I(011, 201) (Pantone, 2024)

Generating tree for I(011, 201) (T2):

Root : (1, 0).
Succession rules : (k, ℓ) −→ (1, k + ℓ− 1), (2, k + ℓ− 2), . . . , (k, ℓ); (∗)

(k + 1, ℓ− 1), (k + 1, ℓ− 2), . . . , (k + 1, 0); (∗∗)
(k + 1, 0). (∗ ∗ ∗)

Generating tree for I(010, 101, 120, 201) (T1):

Root : (1, 0).
Succession rules : (k, ℓ) −→ (1, k − 1), (2, k − 2), . . . , (k, 0); (∗)

(k + 1, ℓ), (k + 1, ℓ− 1), . . . , (k + 1, 0). (∗∗)

Here, k is the bounce defined as n−M , where n is the length and M is its maximal value;
ℓ in T1 is the number of admissible values j such that 0 < j < en,
ℓ in T2 is the number of admissible values j such that 0 < j < M .
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T1: Generating tree for I(010, 101, 120, 201) and ⊤−avoiding rectangulations

Root : (1, 0).
Succession rules : (k, ℓ) −→ (1, k − 1), (2, k − 2), . . . , (k, 0); (∗)

(k + 1, ℓ), (k + 1, ℓ− 1), . . . , (k + 1, 0). (∗∗)

k

ℓ

(1, k−1)
(2, k−2)

(k−1, 1)
(k, 0)

(k+1, ℓ)
(k+1, ℓ−1)

(k + 1, 1)
(k + 1, 0)

(∗∗)

(∗)

M

k = n−M bounce
ℓ admissible values j, 0 < j < en.
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1
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j + 1
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(k, ℓ)

1

i
1

(k + 1, i),
0 ≤ i ≤ ℓ (∗∗)

1
1

k−j+1

j

2

2

j − 1

(k − j + 1, j − 1),
1 ≤ j ≤ k (∗)

2
2 3

j + 1

k rectangles touch E; ℓ segments touch NE on the left

k + 1

j + 2
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T2: Generating tree for I(011, 201) and ⊥-avoiding rectangulations
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T2: Generating tree for I(011, 201) and ⊥-avoiding rectangulations
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T2: Generating tree for I(011, 201) and ⊥-avoiding rectangulations
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T2: Generating tree for I(011, 201) and ⊥-avoiding rectangulations

Root : (1, 0).
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T2: Generating tree for I(011, 201) and ⊥-avoiding rectangulations

Root : (1, 0).
Succession rules : (k, ℓ) −→ (1, k + ℓ− 1), (2, k + ℓ− 2), . . . , (k, ℓ); (∗)

(k + 1, ℓ− 1), (k + 1, ℓ− 2), . . . , (k + 1, 0); (∗∗)
(k + 1, 0). (∗ ∗ ∗)

k

vℓ

(1, k+ ℓ− 1)
(2, k+ ℓ− 2)

(k− 1, ℓ+ 1)
(k, ℓ)

(k+1, ℓ− 1)

(k+1, ℓ− 2)

(k + 1, 1)

(k + 1, 0)

M

vℓ−1

v1

v2

(k + 1, 0)

(∗∗)

(∗)

(∗ ∗ ∗) k is the number of rectangles that touch N, ℓ is the
number of “active” ⊤ joints.
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T2: Generating tree for I(011, 201) and ⊥-avoiding rectangulations

Root : (1, 0).
Succession rules : (k, ℓ) −→ (1, k + ℓ− 1), (2, k + ℓ− 2), . . . , (k, ℓ); (∗)

(k + 1, ℓ− 1), (k + 1, ℓ− 2), . . . , (k + 1, 0); (∗∗)
(k + 1, 0). (∗ ∗ ∗)

(2, 3) (3, 2)(2, 3)(1, 4) (3, 1) (3, 0) (3, 0)

(∗ ∗ ∗)(∗∗)(∗)
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Explicit bijection between I(011, 201) and ⊥-avoiding rectangulations
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Theorem. For every n ≥ 1:
1. We have |In(010, 101, 120, 201)| = |In(011, 201)|.
2. The quadruple of statistics (a, b, c, d) for In(010, 101, 120, 201), In(010, 110, 120, 210), and

In(010, 100, 120, 210), where

a is the number of 0 elements, b is the number of left-to-right-maxima,
c is the bounce, d is the number of high elements.

matches the quadruple of statistics (x, y, z, t) for In(011, 201), where

x is the number of high elements, y is the number of 0 elements,
z is the number of right-to-left-minima, t is the bounce.

In(010, 101, 120, 201)

a

b

c

d

x

t

z

y In(011, 201)
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Weak Equivalence Strong Equivalence

⊤

⊤,⊥

⊤,⊢

⊤,⊥,⊢

⊤,⊥,⊢,⊣

|Rw
n (⊤)| = Cn OEIS A279555

|Rw
n (⊤,⊥)| = 2n−1 OEIS A287709

|Rn(⊤,⊢)| = 2n−1

|Rn(⊤,⊥,⊢)| = n

|Rn(⊤,⊥,⊢,⊣)| = 2
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Proposition 3a: |Rw
n (⊢,⊣)| = 2n−1

Proof: Enumerated by compositions of n.
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Proposition 3b (Asinowski and Jeĺınek): Enumerating Rs
n(⊢,⊣), OEIS A287709

Proof: Bijection to rushed Dyck paths

A rushed Dyck path is one which attains its maximum height on the initial ascent.
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A rushed Dyck path is one which attains its maximum height on the initial ascent.
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Proposition 3b (Asinowski and Jeĺınek): Enumerating Rs
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Proof: Bijection to rushed Dyck paths

A rushed Dyck path is one which attains its maximum height on the initial ascent.
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Proposition 3b (Asinowski and Jeĺınek): Enumerating Rs
n(⊢,⊣), OEIS A287709

Proof: Bijection to rushed Dyck paths

A rushed Dyck path is one which attains its maximum height on the initial ascent.
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Proposition 3b (Asinowski and Jeĺınek): Enumerating Rs
n(⊢,⊣), OEIS A287709

Proof: Bijection to rushed Dyck paths

A rushed Dyck path is one which attains its maximum height on the initial ascent.

Asymptotics recently proven in a pre-print from Axel Bacher
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Proposition 4: |Rn(⊤,⊢)| = 2n−1

Proof: Construction of rectangulation
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Proposition 4: |Rn(⊤,⊢)| = 2n−1

Proof: Construction of rectangulation
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Proposition 4: |Rn(⊤,⊢)| = 2n−1
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Proposition 4: |Rn(⊤,⊢)| = 2n−1
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Proposition 4: |Rn(⊤,⊢)| = 2n−1

Proof: Construction of rectangulation
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Proposition 4: |Rn(⊤,⊢)| = 2n−1
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Proposition 4: |Rn(⊤,⊢)| = 2n−1
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Proposition 4: |Rn(⊤,⊢)| = 2n−1
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Proposition 4: |Rn(⊤,⊢)| = 2n−1

Proof: Construction of rectangulation
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Observation 5: |Rn(⊤,⊥,⊢)| = n and |Rn(⊤,⊥,⊢,⊣) = 2

Proofs: Construction of rectangulations
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Observation 5: |Rn(⊤,⊥,⊢)| = n and |Rn(⊤,⊥,⊢,⊣) = 2

Proofs: Construction of rectangulations
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Observation 5: |Rn(⊤,⊥,⊢)| = n and |Rn(⊤,⊥,⊢,⊣) = 2

Proofs: Construction of rectangulations



15 - 4

Observation 5: |Rn(⊤,⊥,⊢)| = n and |Rn(⊤,⊥,⊢,⊣) = 2

Proofs: Construction of rectangulations
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Summary

Weak Equivalence Strong Equivalence

⊤

⊤,⊥

⊤,⊢

⊤,⊥,⊢

⊤,⊥,⊢,⊣

|Rw
n (⊤)| = Cn |Rs

n(⊤)| = |In(110, 210, 010, 120)|

|Rw
n (⊤,⊥)| = 2n−1 Bijection to rushed Dyck paths

|Rn(⊤,⊢)| = 2n−1

|Rn(⊤,⊥,⊢)| = n

|Rn(⊤,⊥,⊢,⊣)| = 2
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Summary

Weak Equivalence Strong Equivalence

⊤

⊤,⊥

⊤,⊢

⊤,⊥,⊢

⊤,⊥,⊢,⊣

|Rw
n (⊤)| = Cn |Rs

n(⊤)| = |In(110, 210, 010, 120)|

|Rw
n (⊤,⊥)| = 2n−1 Bijection to rushed Dyck paths

|Rn(⊤,⊢)| = 2n−1

|Rn(⊤,⊥,⊢)| = n

|Rn(⊤,⊥,⊢,⊣)| = 2

THANK YOU!


