

PATTERNS IN RECTANGULATIONS: T-LIKE PATTERNS, INVERSION SEQUENCES, AND DYCK PATHS

Michaela A. Polley¹

joint work with Andrei Asinowski² (Alpen-Adria-Universität Klagenfurt)

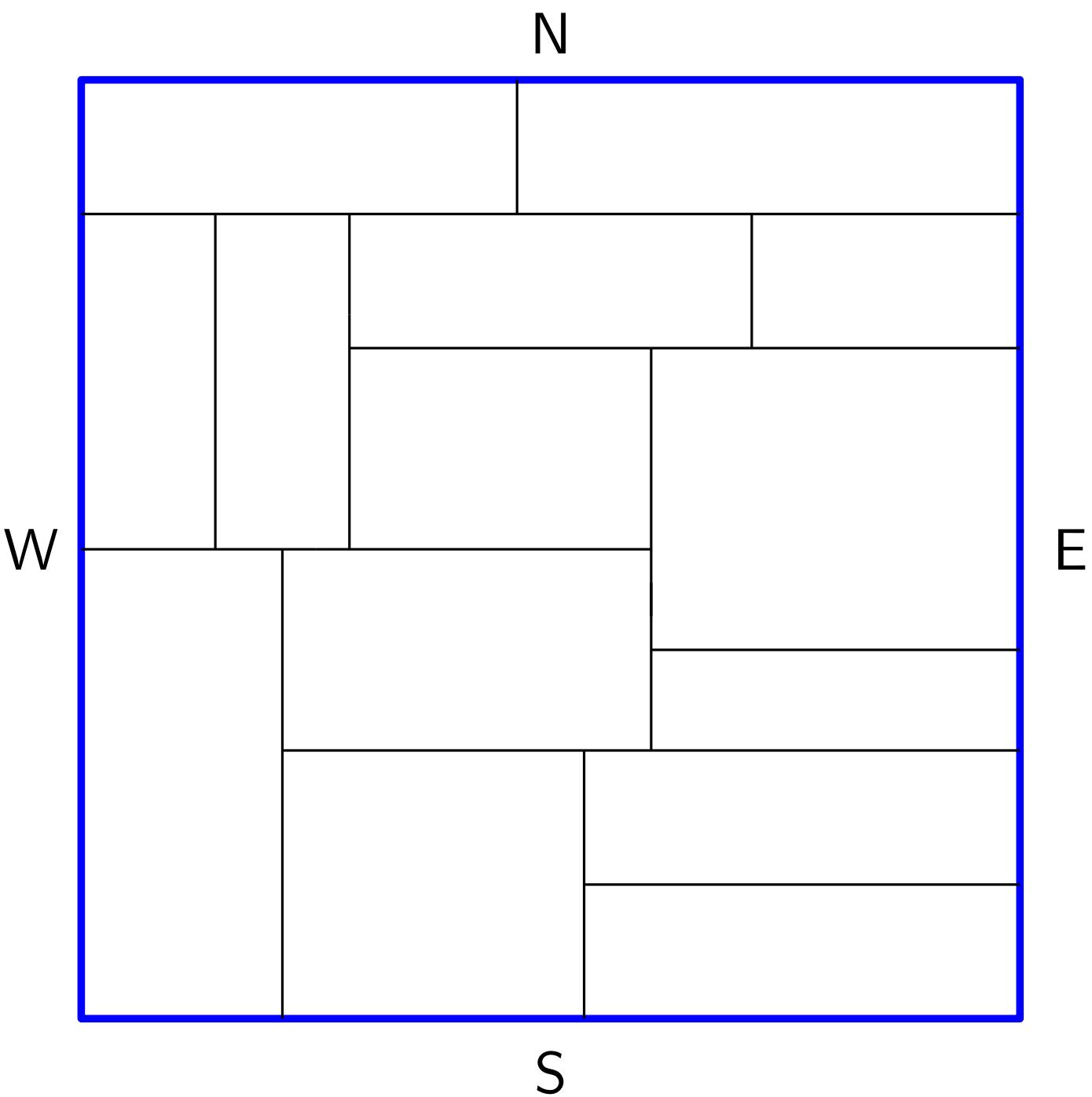
Dartmouth Combinatorics Seminar
Hanover, NH, USA
April 22, 2025

¹ Supported by Fulbright Austria and Austrian Marshall Plan Foundation

² Supported by FWF – Austrian Science Fund

Definitions and Terminology

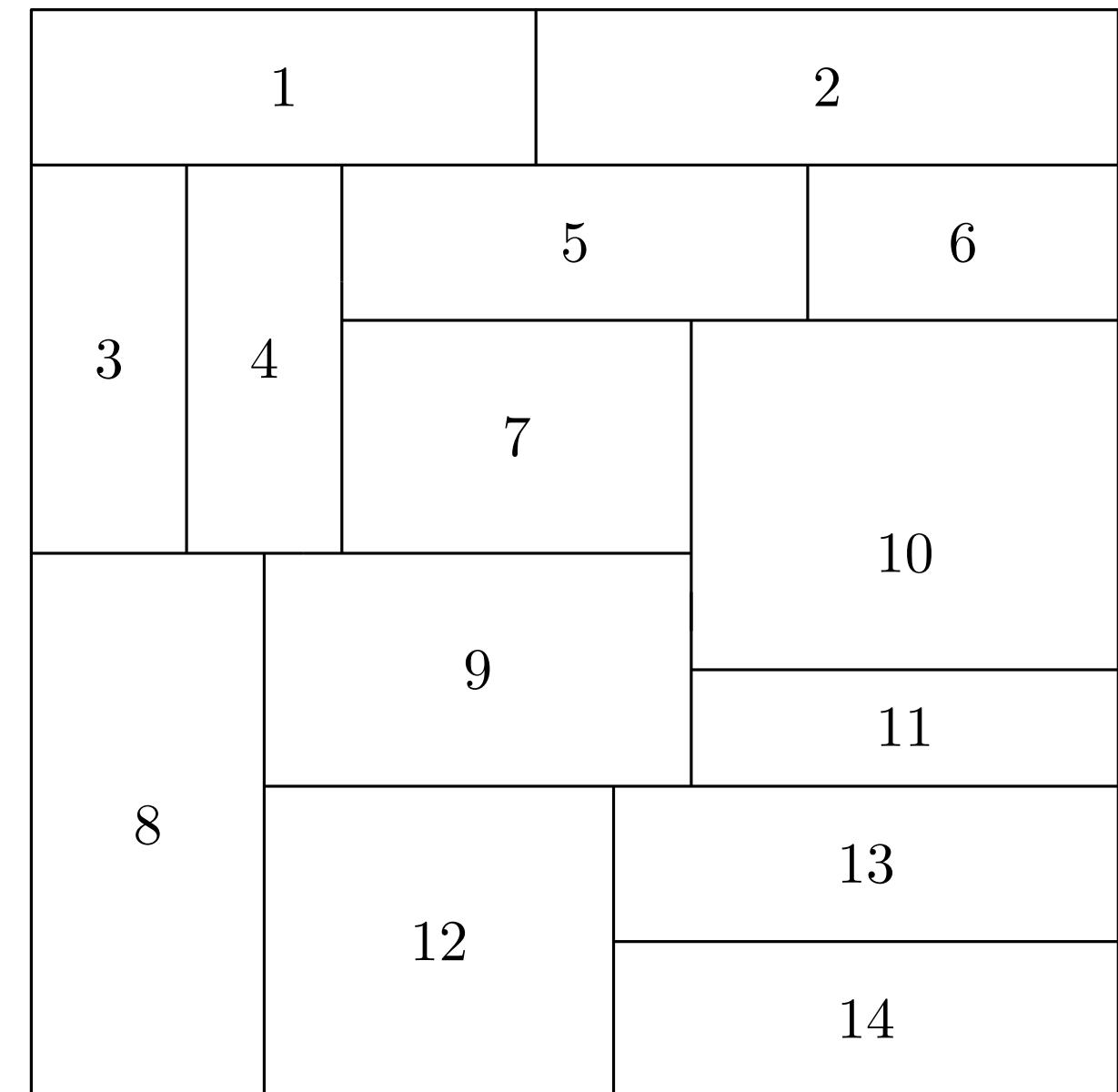
A *rectangulation* \mathcal{R} is a partition of a rectangle R into a finite number of rectangles such that there are no $+$ joints.



Definitions and Terminology

A *rectangulation* \mathcal{R} is a partition of a rectangle R into a finite number of rectangles such that there are no + joints.

The *size* of \mathcal{R} is the number of interior rectangles.

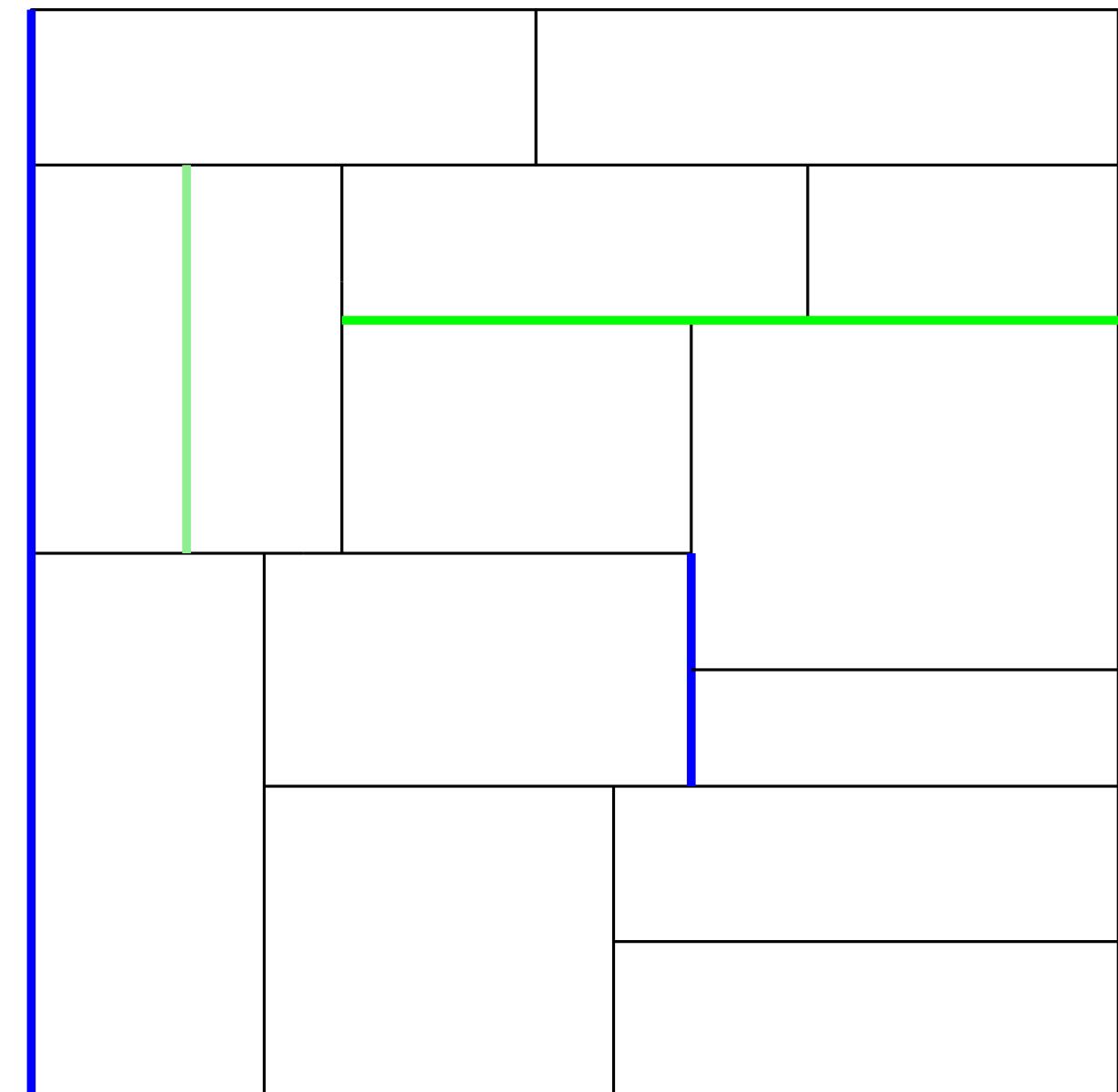


Definitions and Terminology

A *rectangulation* \mathcal{R} is a partition of a rectangle R into a finite number of rectangles such that there are no $+$ joints.

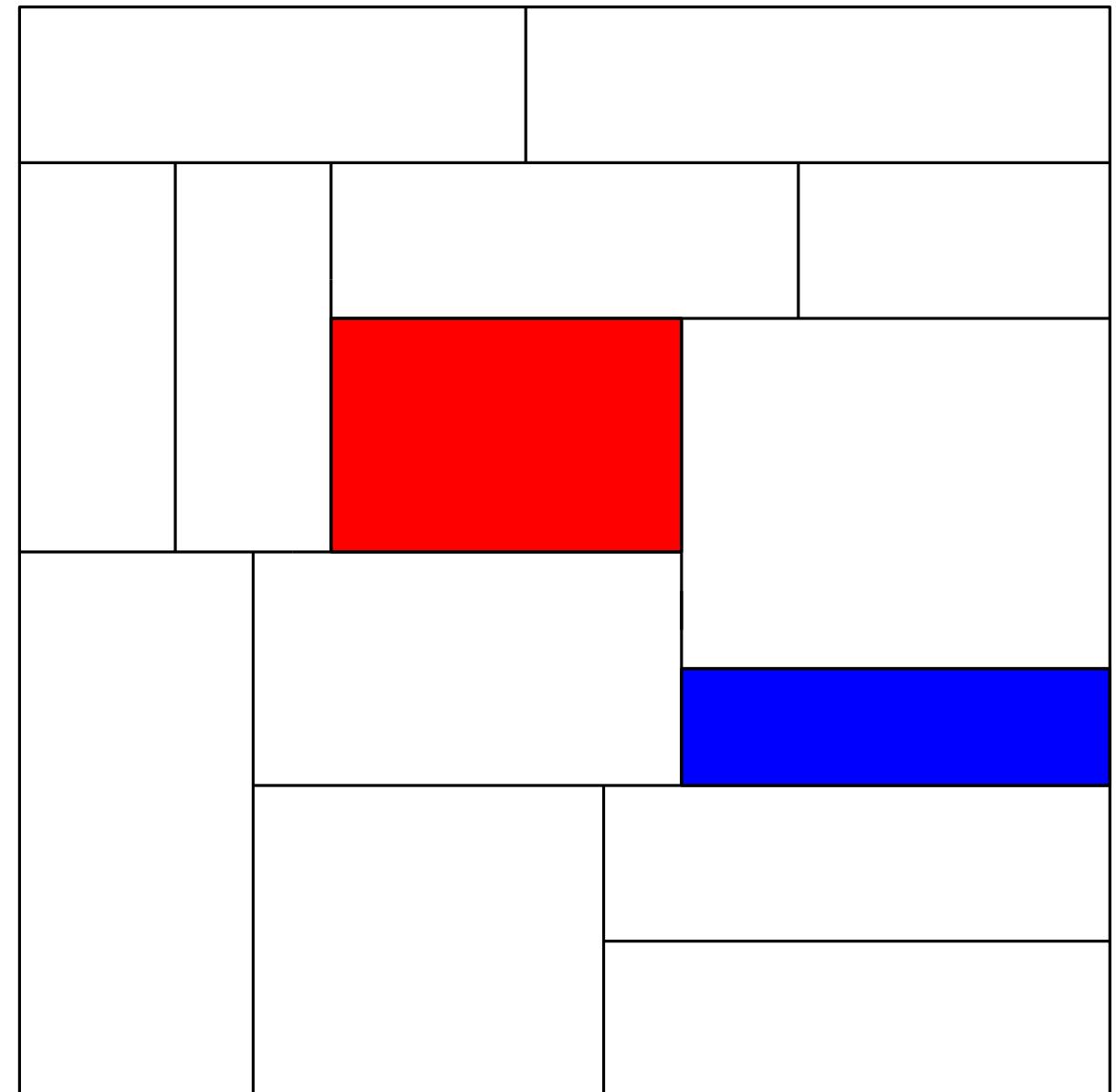
The *size* of \mathcal{R} is the number of interior rectangles.

A *segment* in \mathcal{R} is a maximal union of rectangle edges which form a straight line (and not an edge of R).



Definitions and Terminology

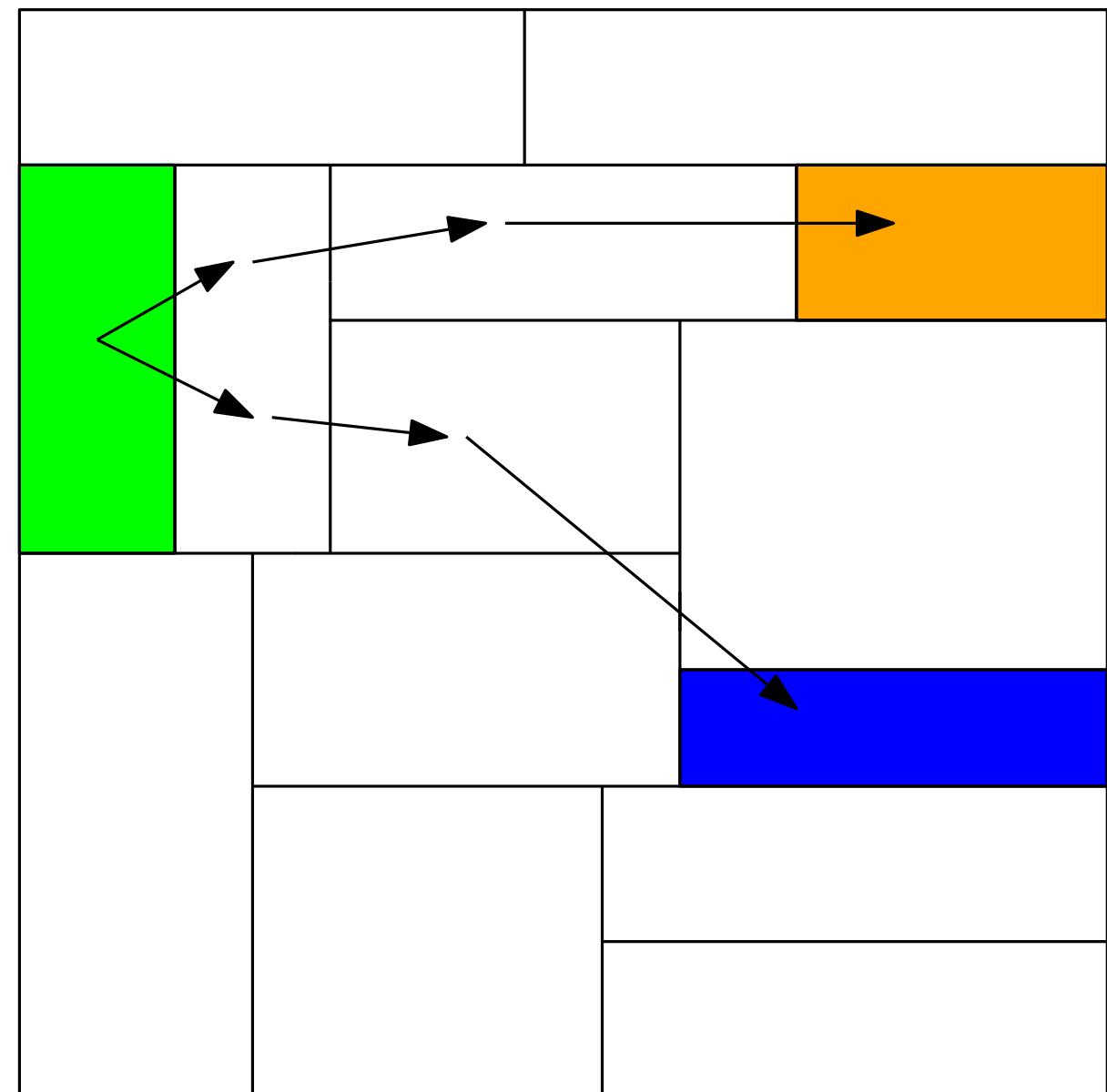
Within \mathcal{R} , two rectangles are *left/right neighbors* if they are separated by a single vertical segment.



Definitions and Terminology

Within \mathcal{R} , rectangles r and s are *left/right neighbors* if they are separated by a single vertical segment.

Rectangle r is *left of* rectangle s if they are part of a sequence of left/right neighbors.

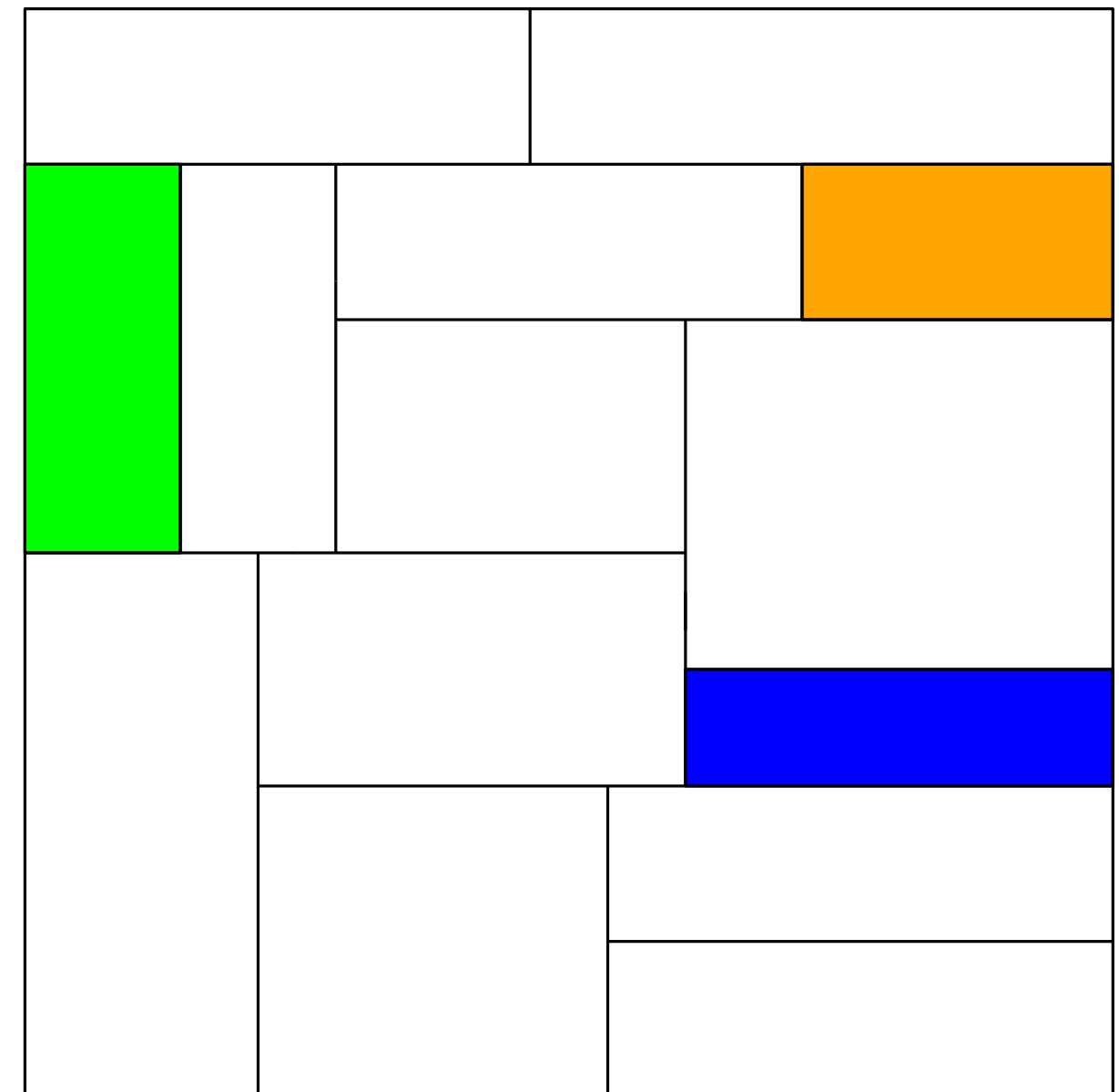


Definitions and Terminology

Within \mathcal{R} , rectangles r and s are *left/right neighbors* if they are separated by a single vertical segment.

Rectangle r is *left of* rectangle s if they are part of a sequence of left/right neighbors.

Top/bottom neighbors and *above/below* relations are defined analogously.



Definitions and Terminology

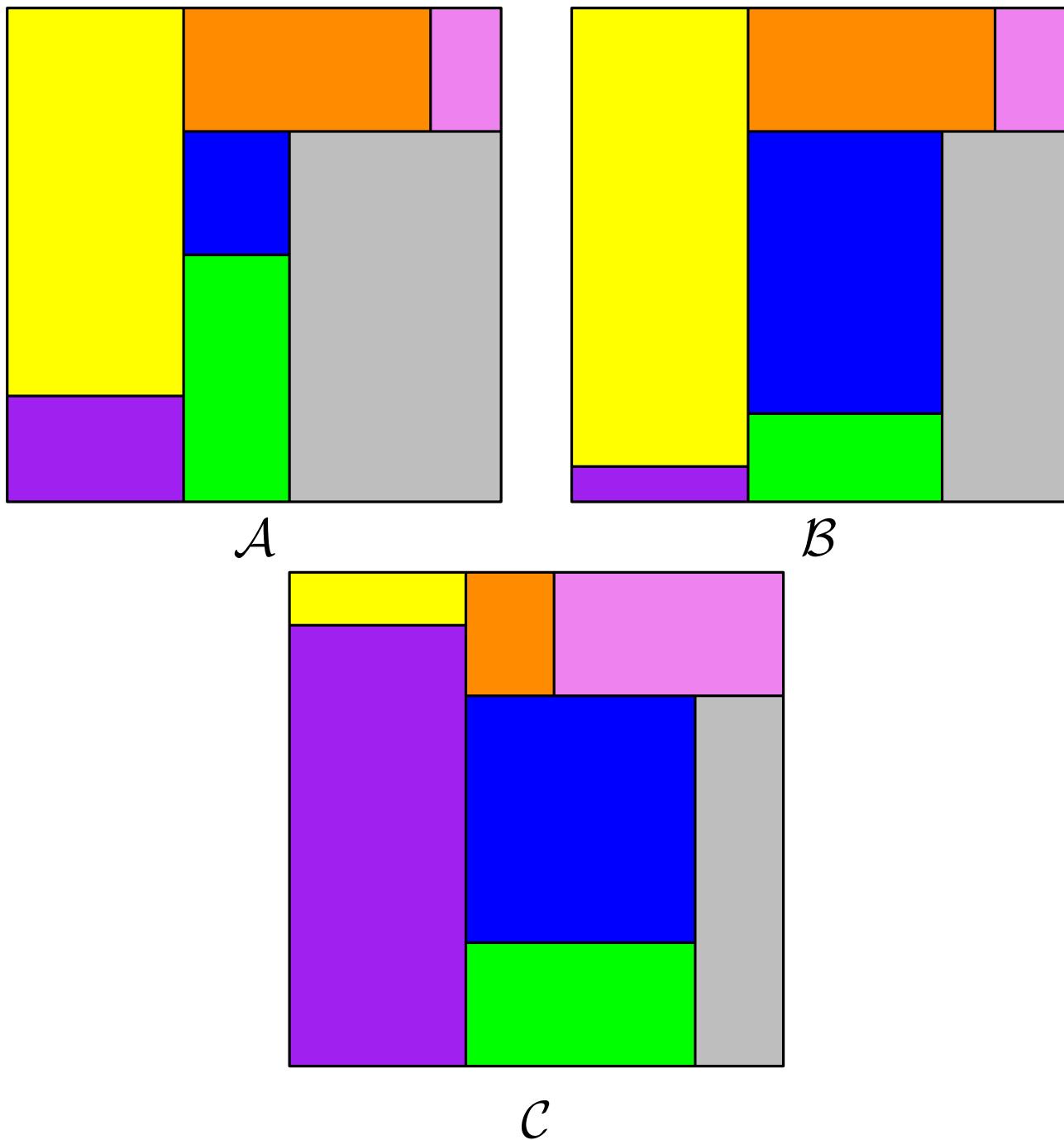
Within \mathcal{R} , rectangles r and s are *left/right neighbors* if they are separated by a single vertical segment.

Rectangle r is *left of* rectangle s if they are part of a sequence of left/right neighbors.

Top/bottom neighbors and *above/below* relations are defined analogously.

Rectangulations are *weakly equivalent* if they preserve left/right and above/below relations.

They are *strongly equivalent* if they also preserve contact between rectangles.



Definitions and Terminology

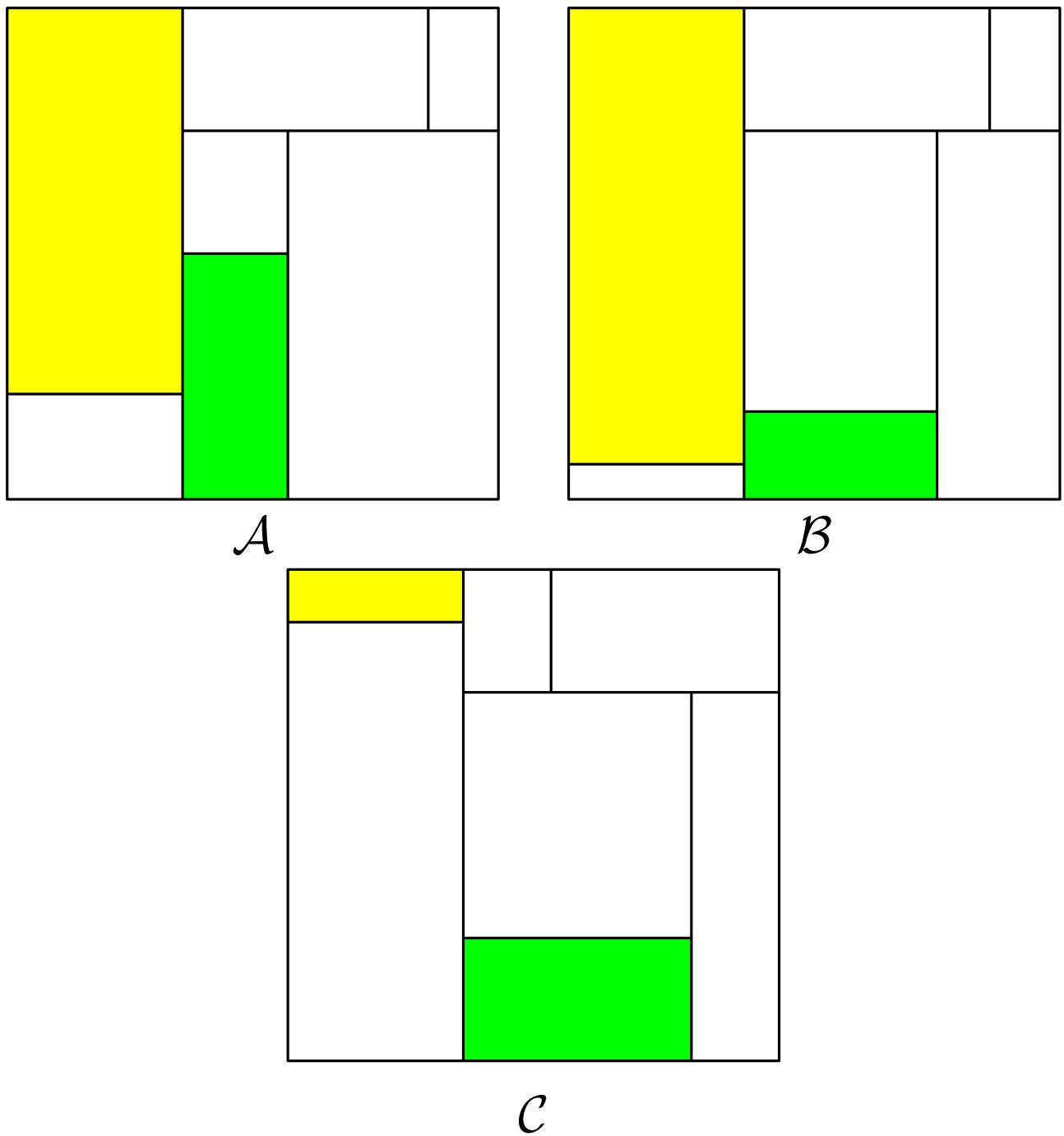
Within \mathcal{R} , rectangles r and s are *left/right neighbors* if they are separated by a single vertical segment.

Rectangle r is *left of* rectangle s if they are part of a sequence of left/right neighbors.

Top/bottom neighbors and *above/below* relations are defined analogously.

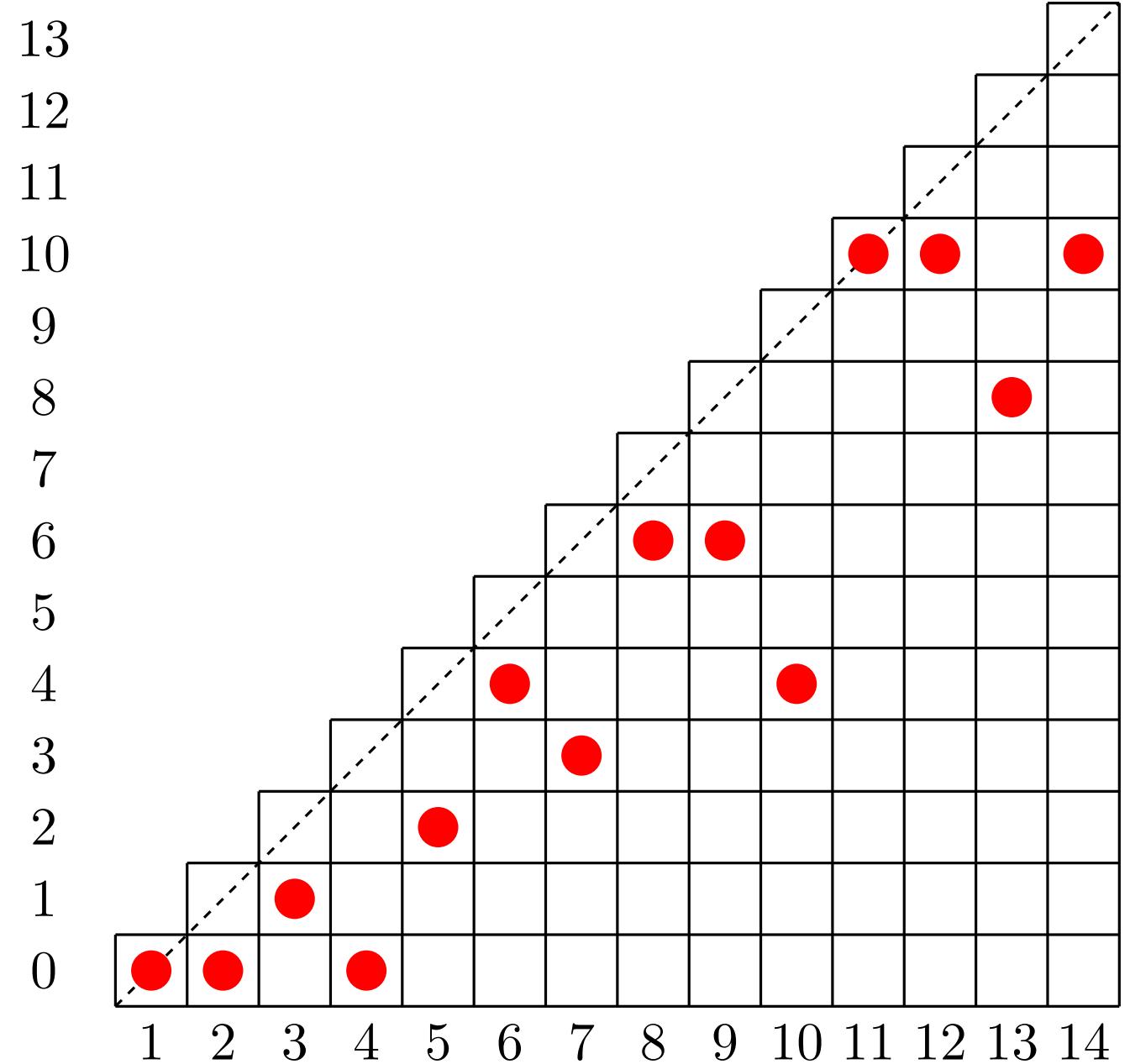
Rectangulations are *weakly equivalent* if they preserve left/right and above/below relations.

They are *strongly equivalent* if they also preserve contact between rectangles.



Definitions and Terminology

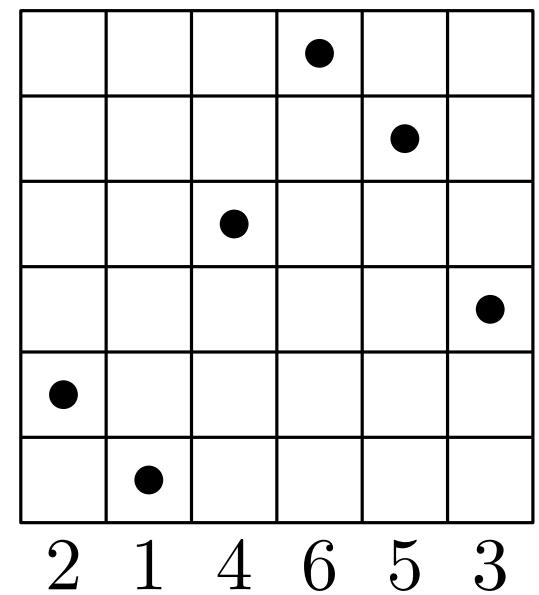
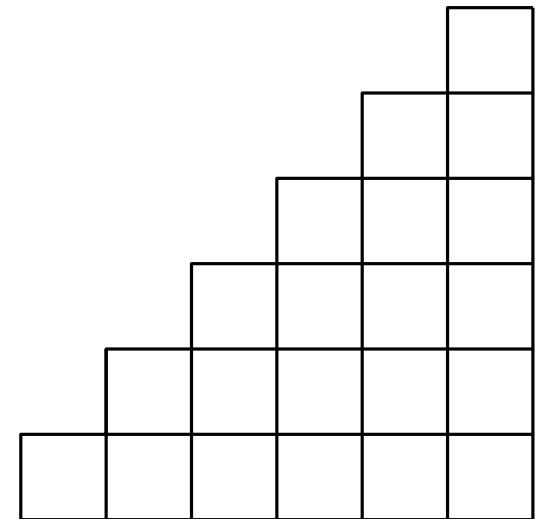
An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

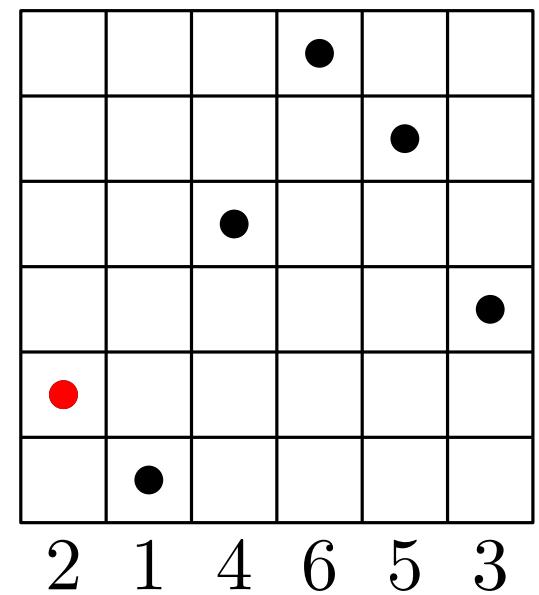
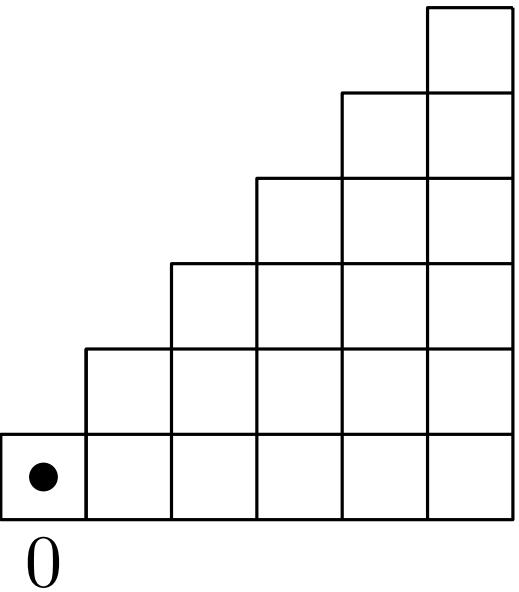
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

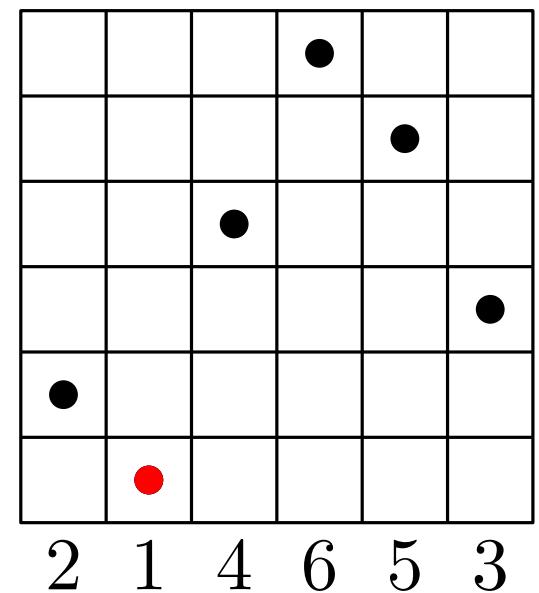
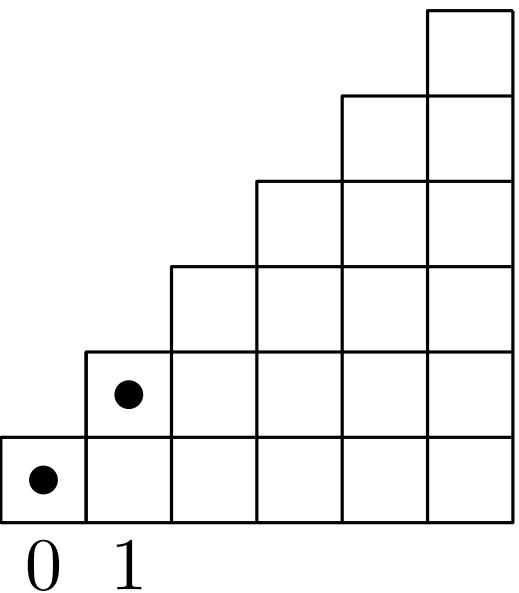
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

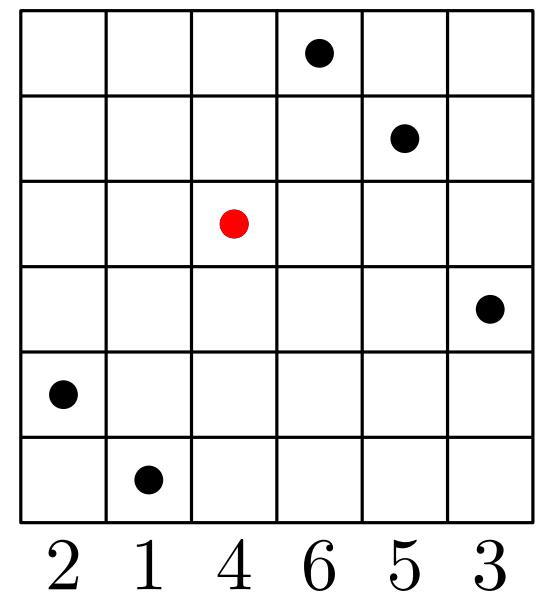
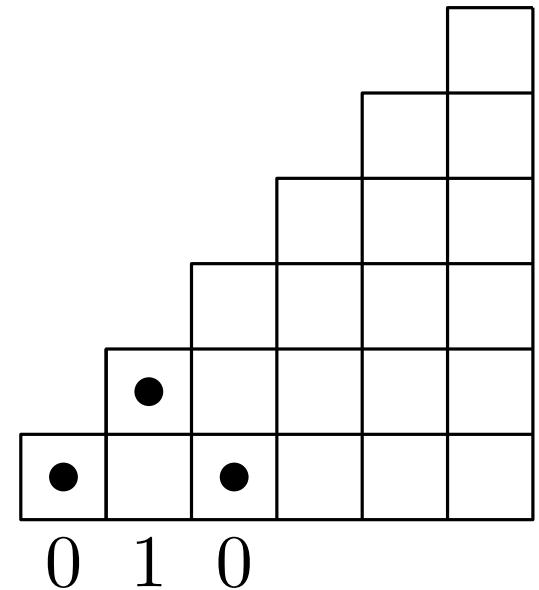
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

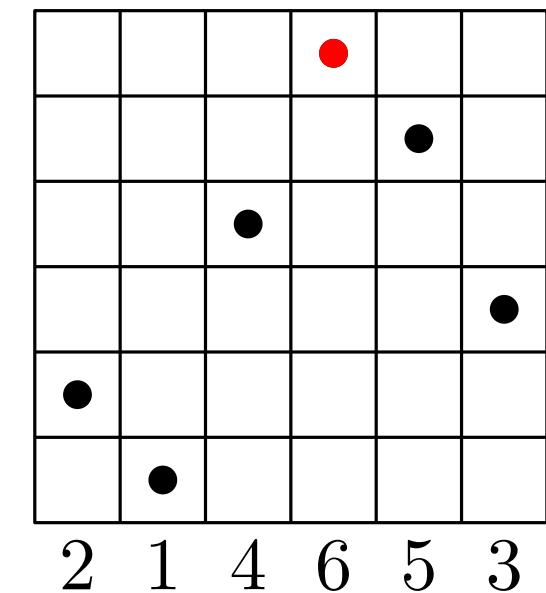
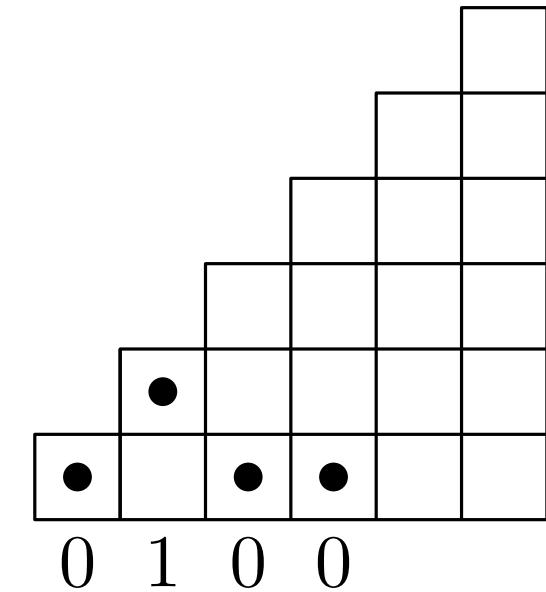
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

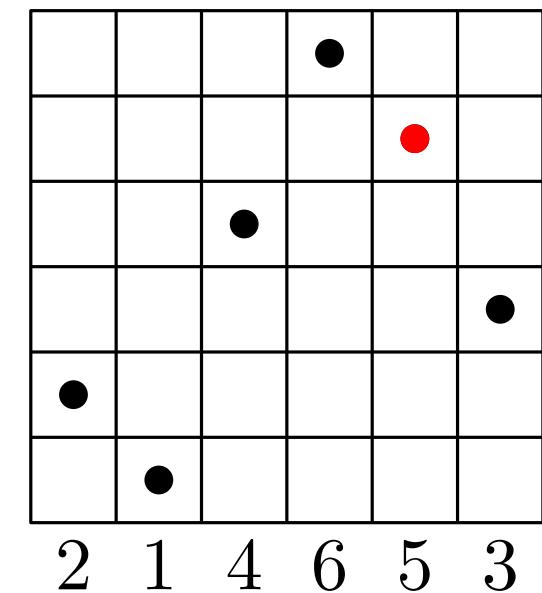
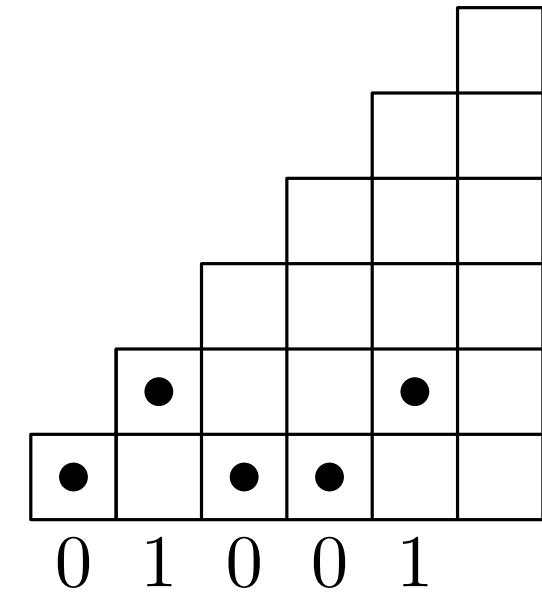
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

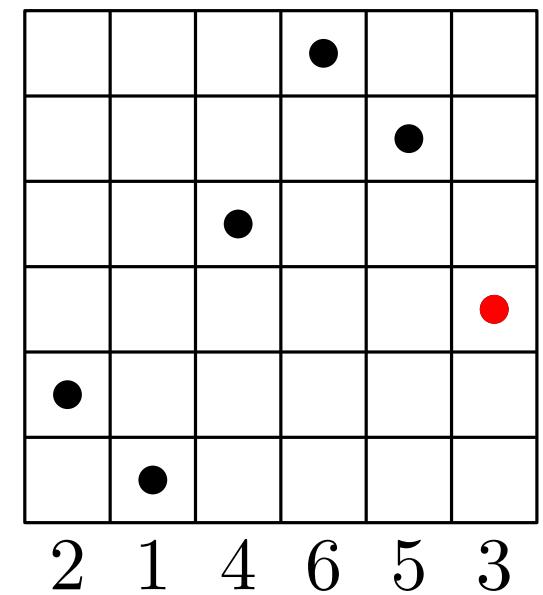
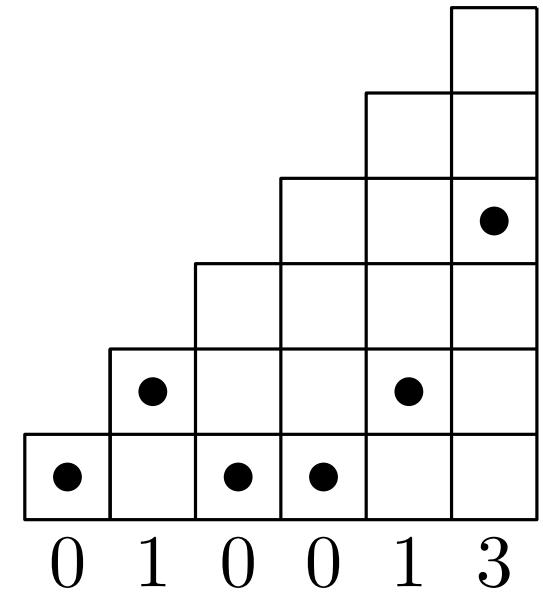
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

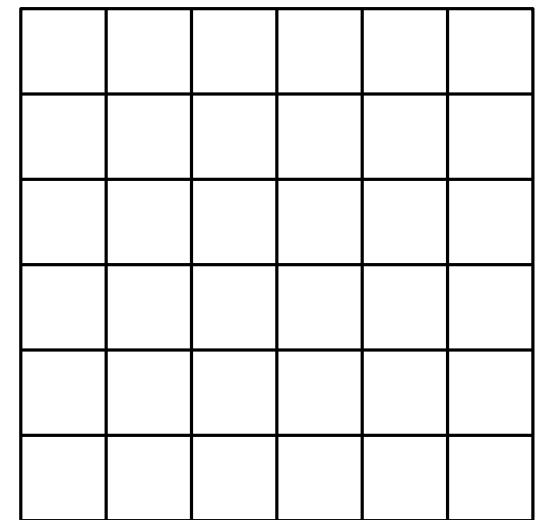
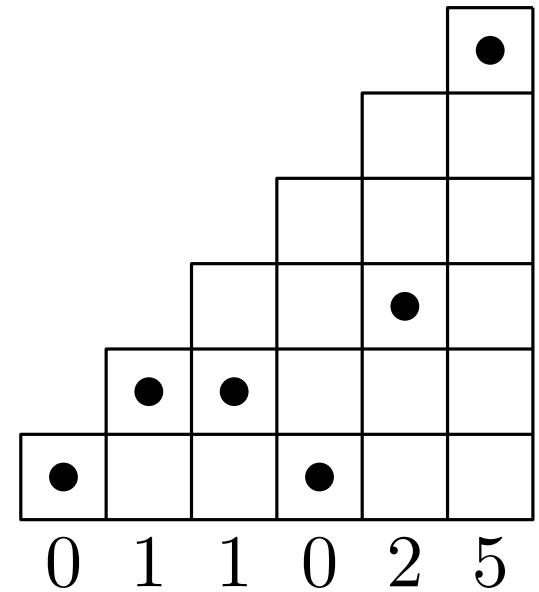
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

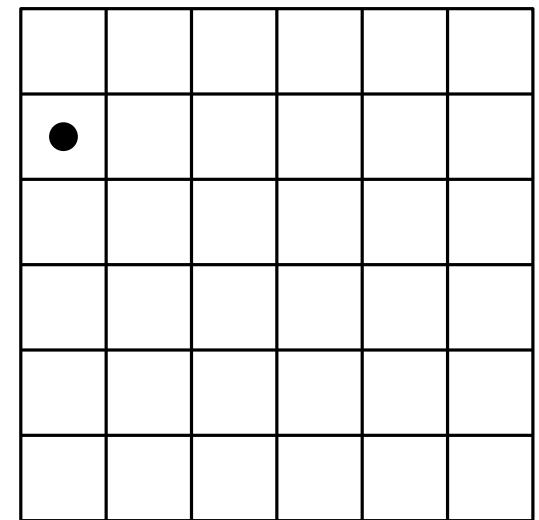
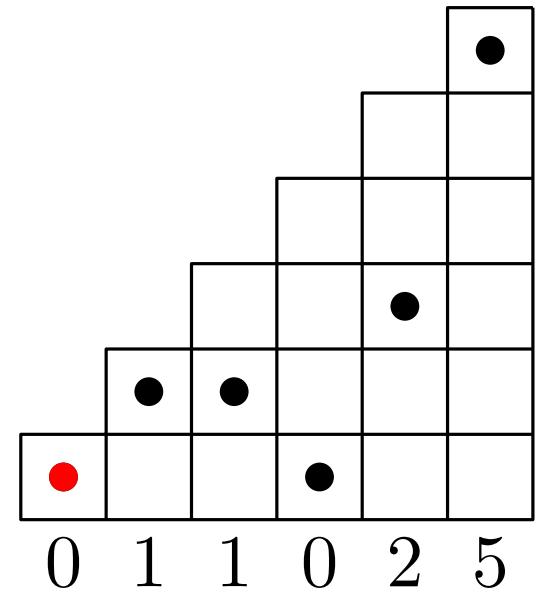
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

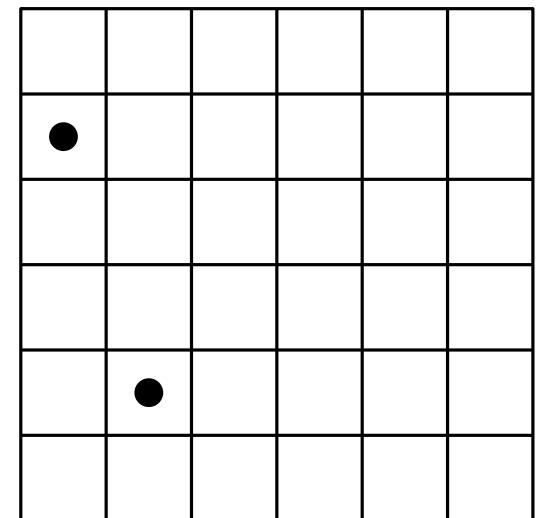
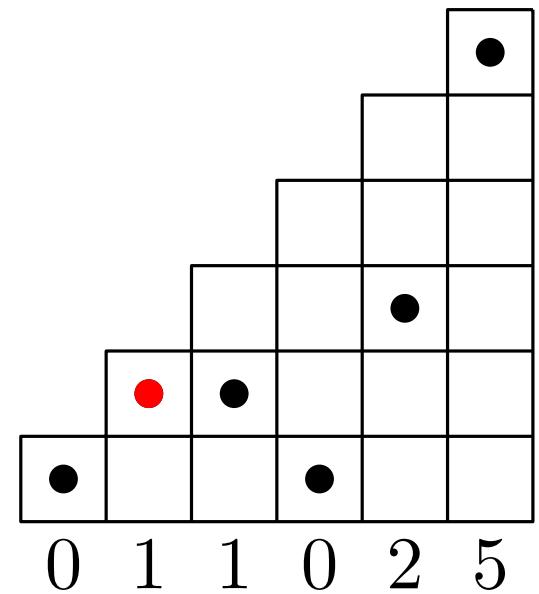
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

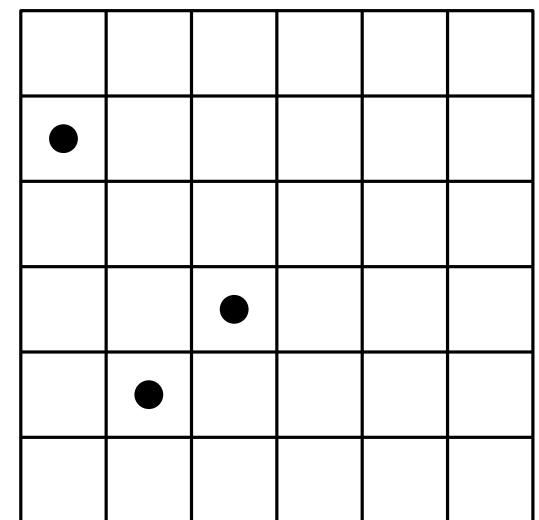
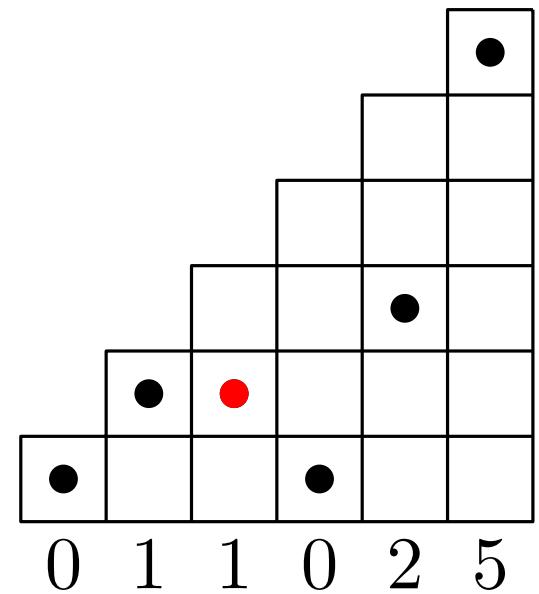
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

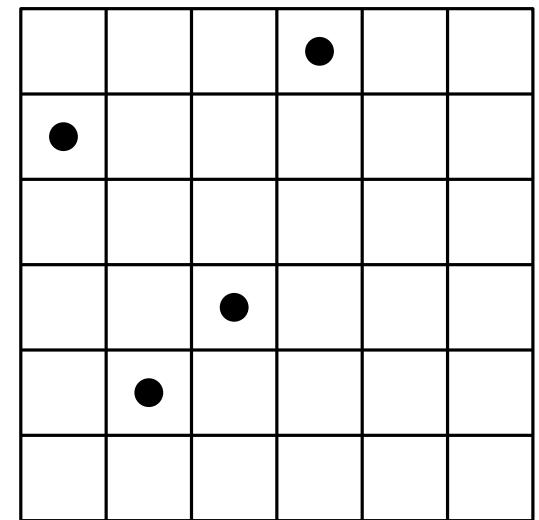
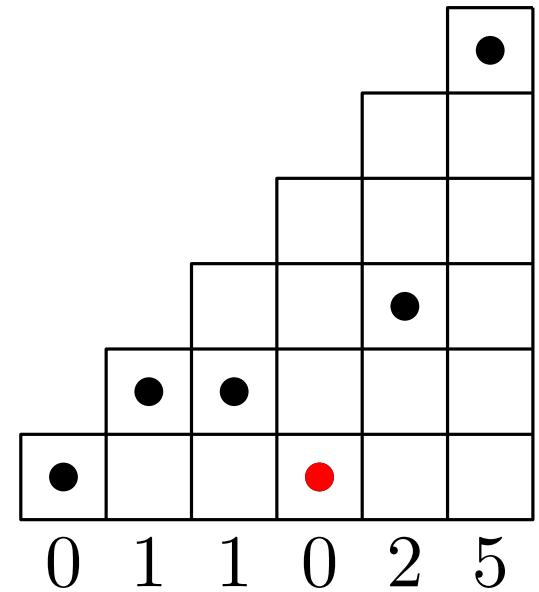
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

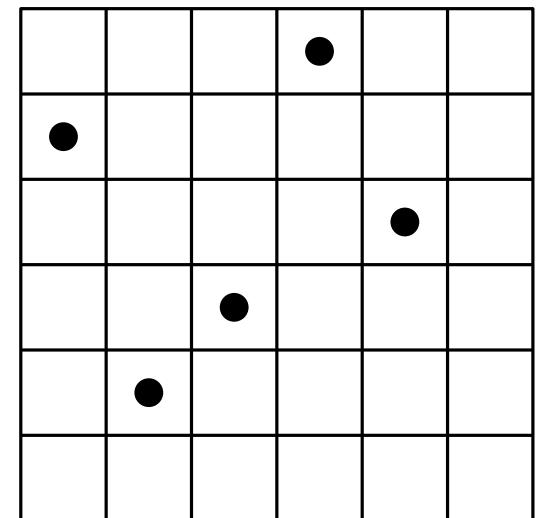
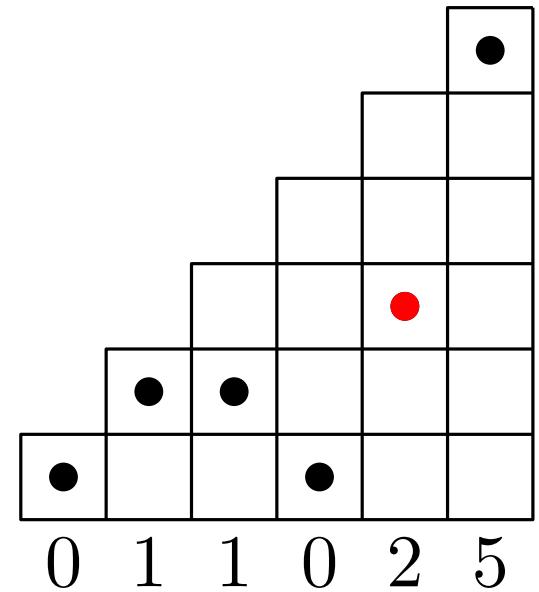
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

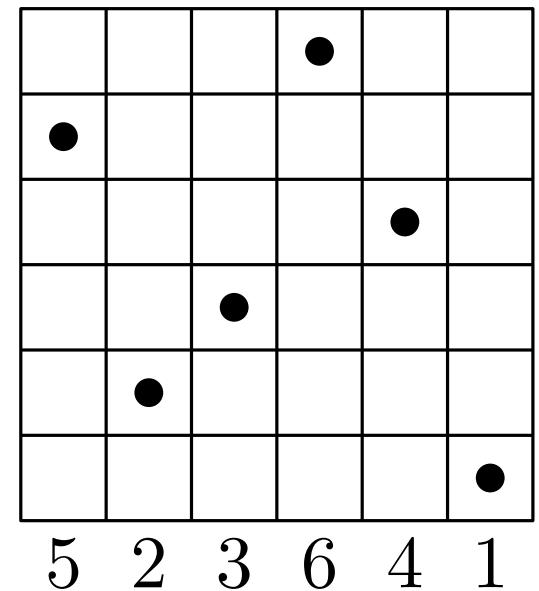
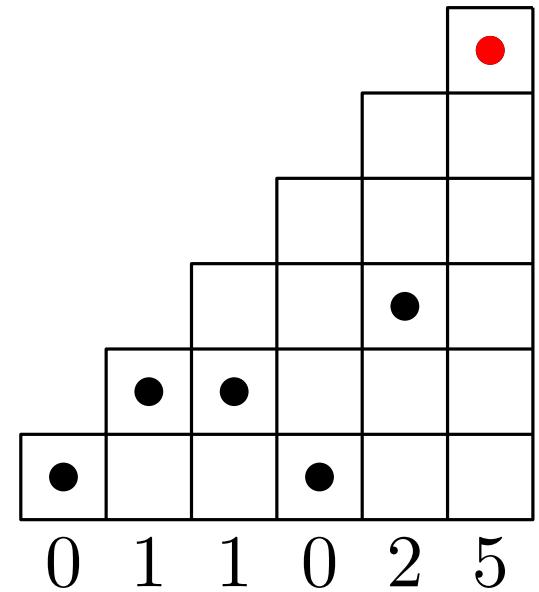
There is a bijection between permutations and inversion sequences.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

There is a bijection between permutations and inversion sequences.

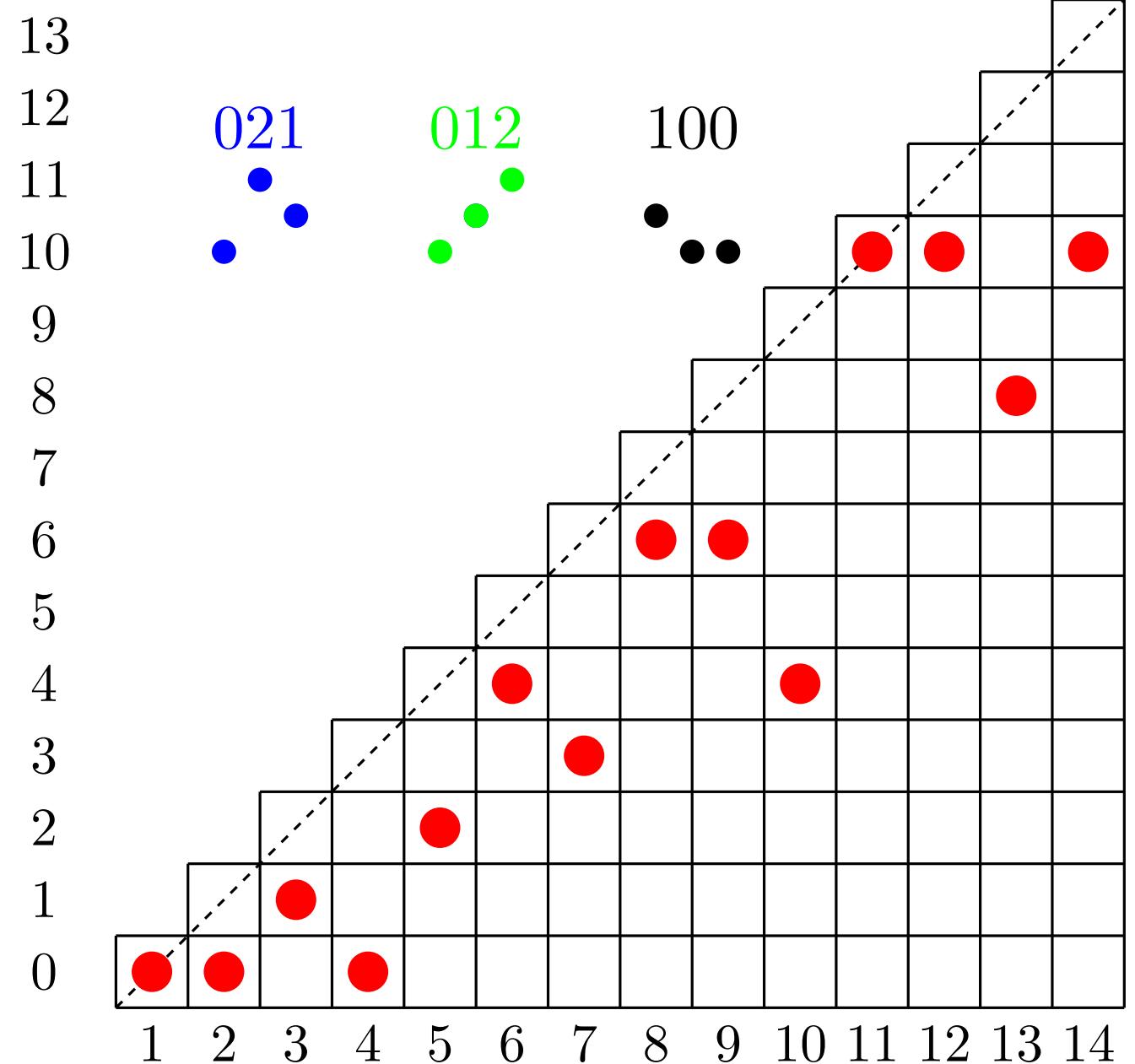


Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

There is a bijection between permutations and inversion sequences.

We say s contains a pattern t if there is a subsequence of s which is order isomorphic to t .

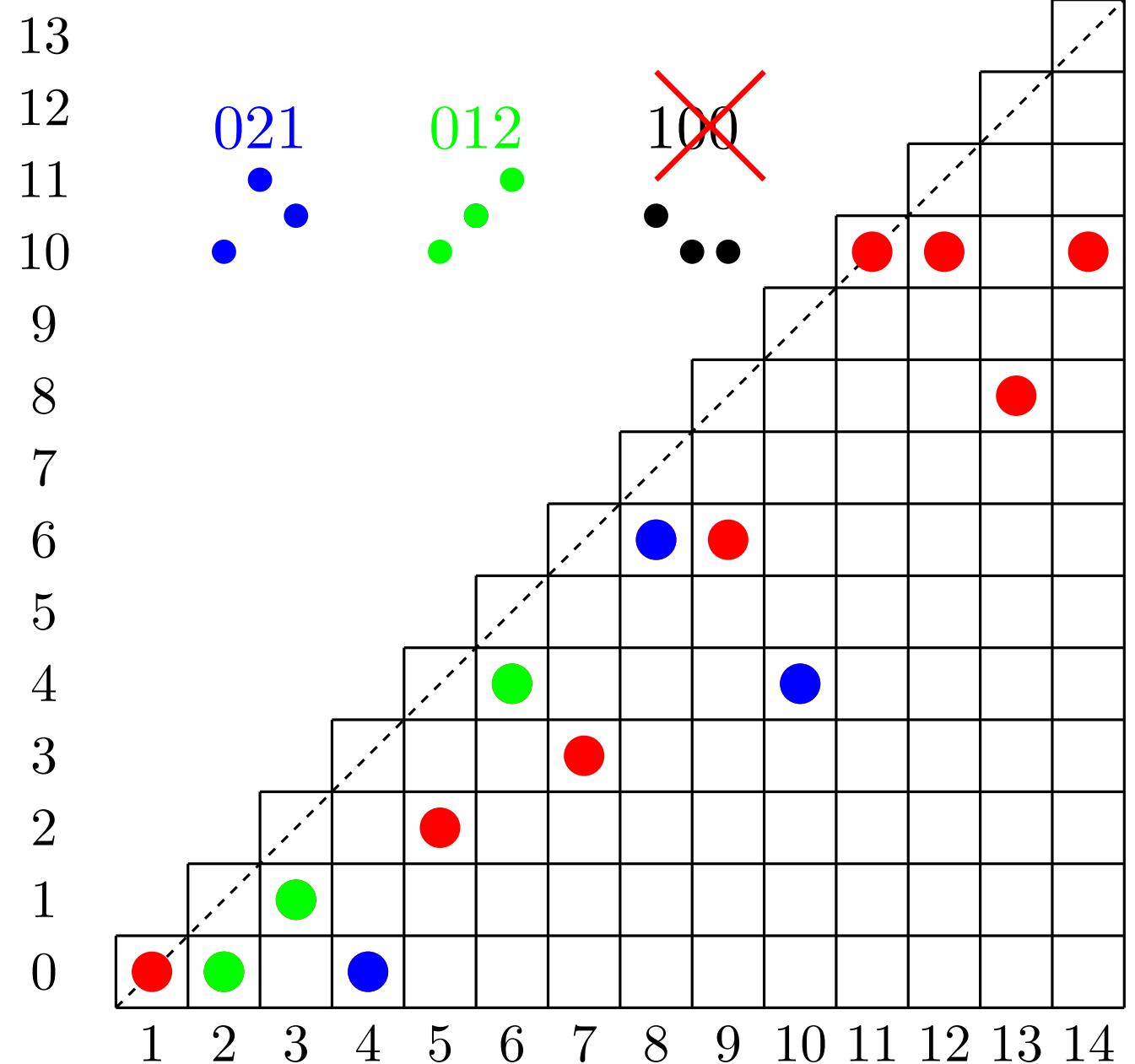


Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

There is a bijection between permutations and inversion sequences.

We say s contains a pattern t if there is a subsequence of s which is order isomorphic to t .



Definitions and Terminology

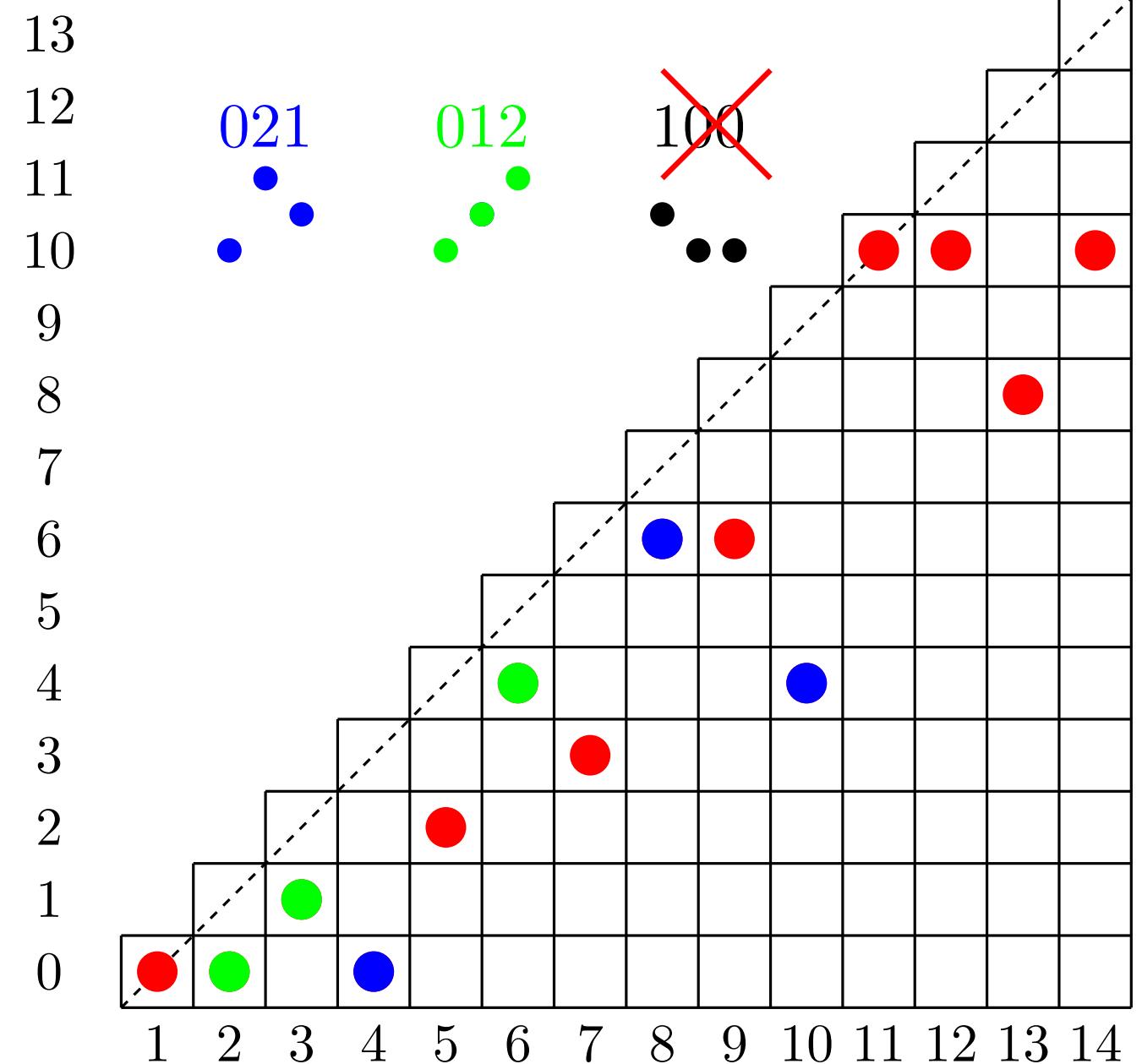
An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

There is a bijection between permutations and inversion sequences.

We say s contains a pattern t if there is a subsequence of s which is order isomorphic to t .

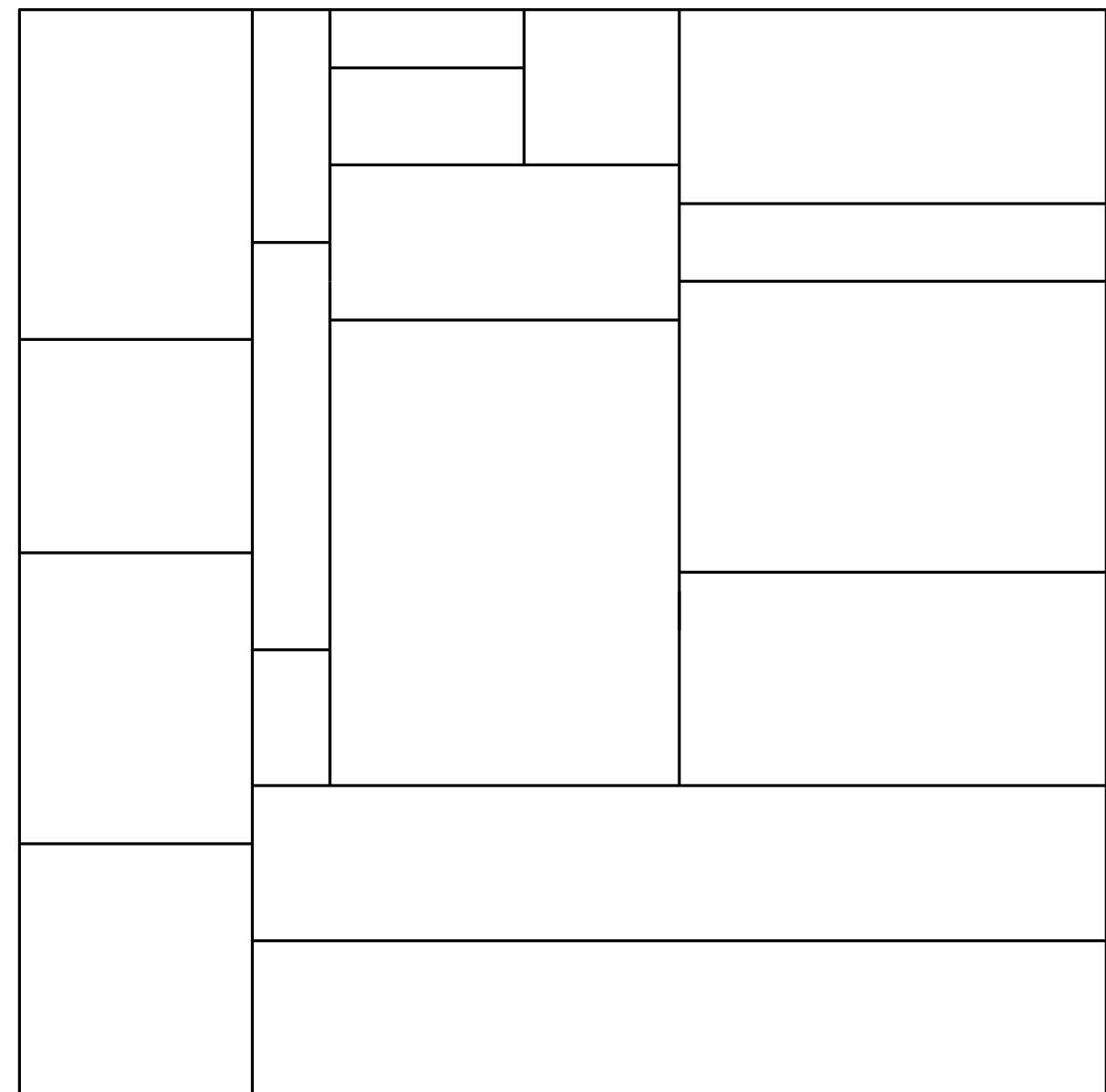
If s does not contain t , then we say that s avoids t .

Denote by $I_n(L)$ the set of inversion sequences of length n which avoid all of the patterns in L .



Definitions and Terminology

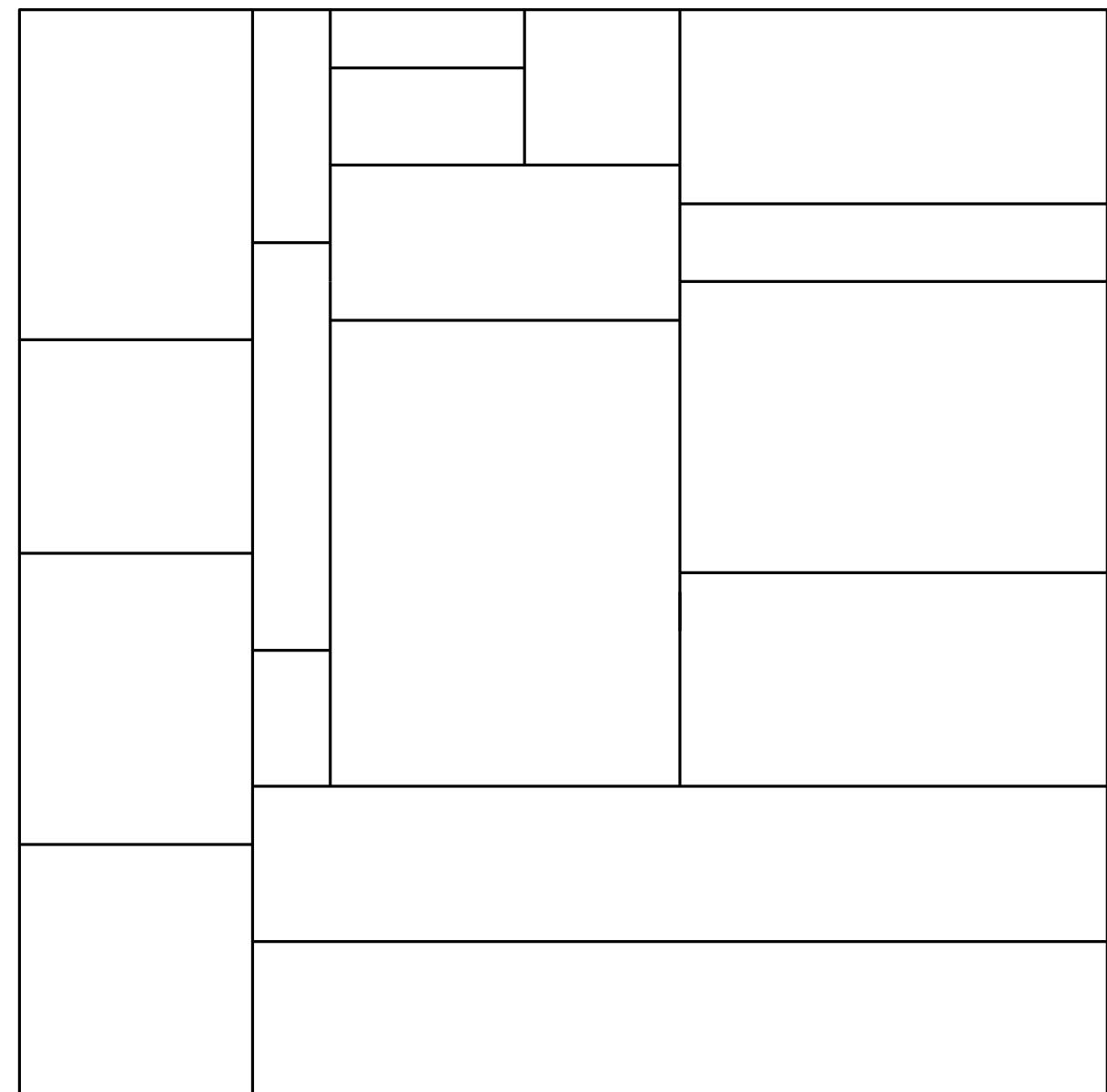
A rectangulation \mathcal{R} avoids \top if it does not contain a \top joint. Avoiding \vdash , \dashv , and \perp are defined analogously.



Definitions and Terminology

A rectangulation \mathcal{R} avoids \top if it does not contain a \top joint. Avoiding \vdash , \dashv , and \perp are defined analogously.

Systematic study of pattern avoidance in rectangulations was started by Merino and Mütze (2021), several models were solved by Asinowski and Banderier (2023).



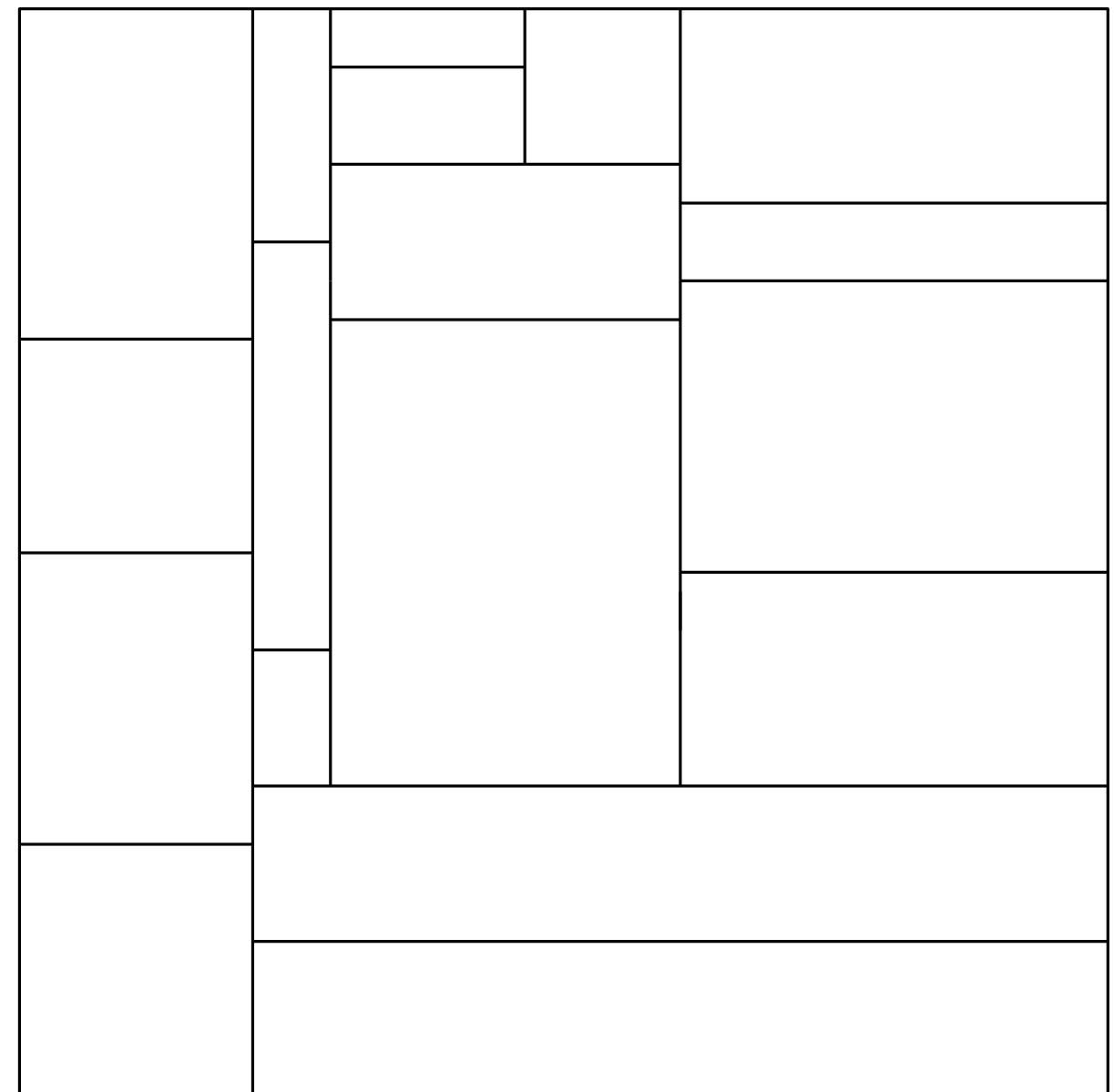
Definitions and Terminology

A rectangulation \mathcal{R} avoids \top if it does not contain a \top joint. Avoiding \vdash , \dashv , and \perp are defined analogously.

Systematic study of pattern avoidance in rectangulations was started by Merino and Mütze (2021), several models were solved by Asinowski and Banderier (2023).

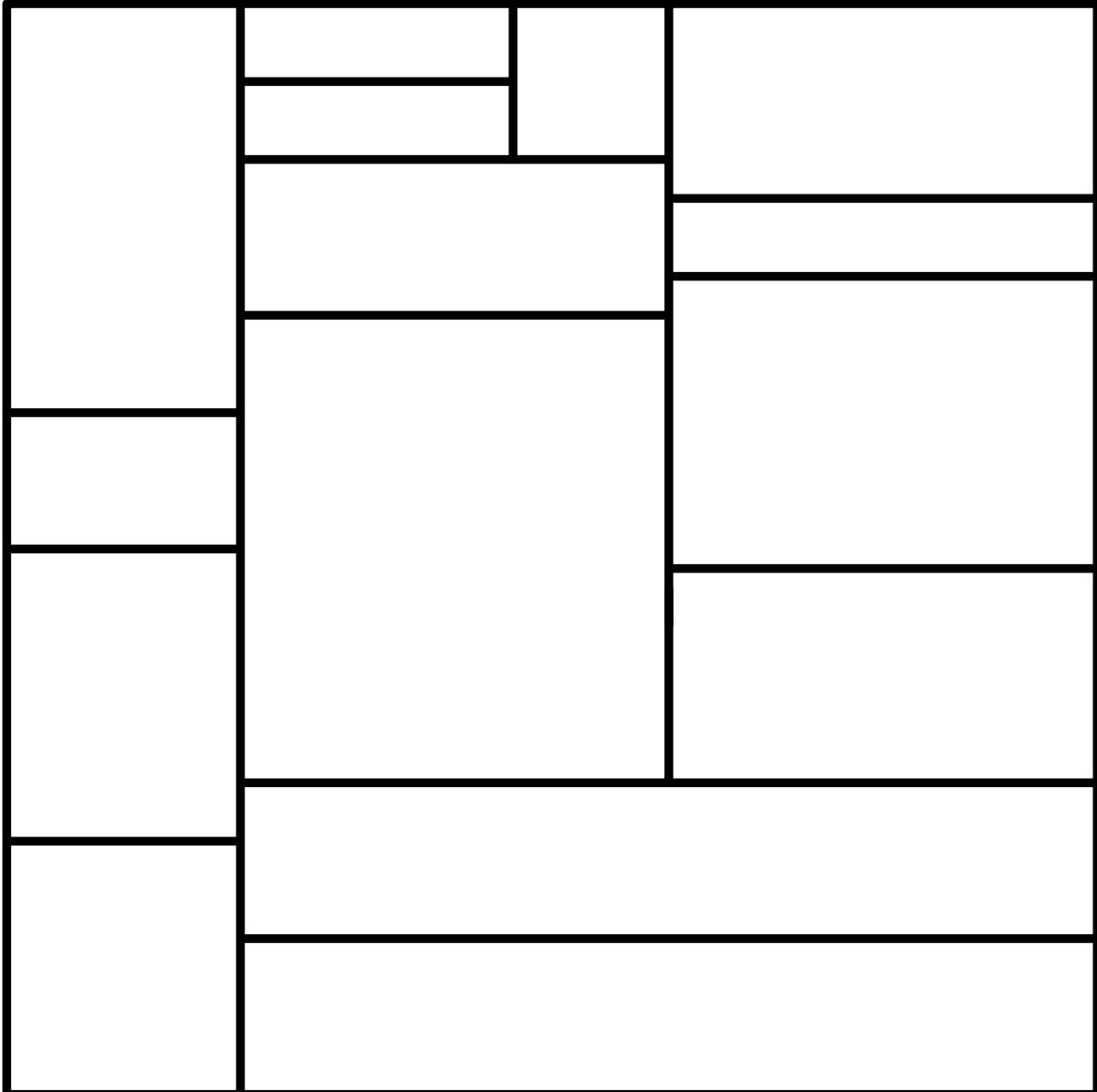
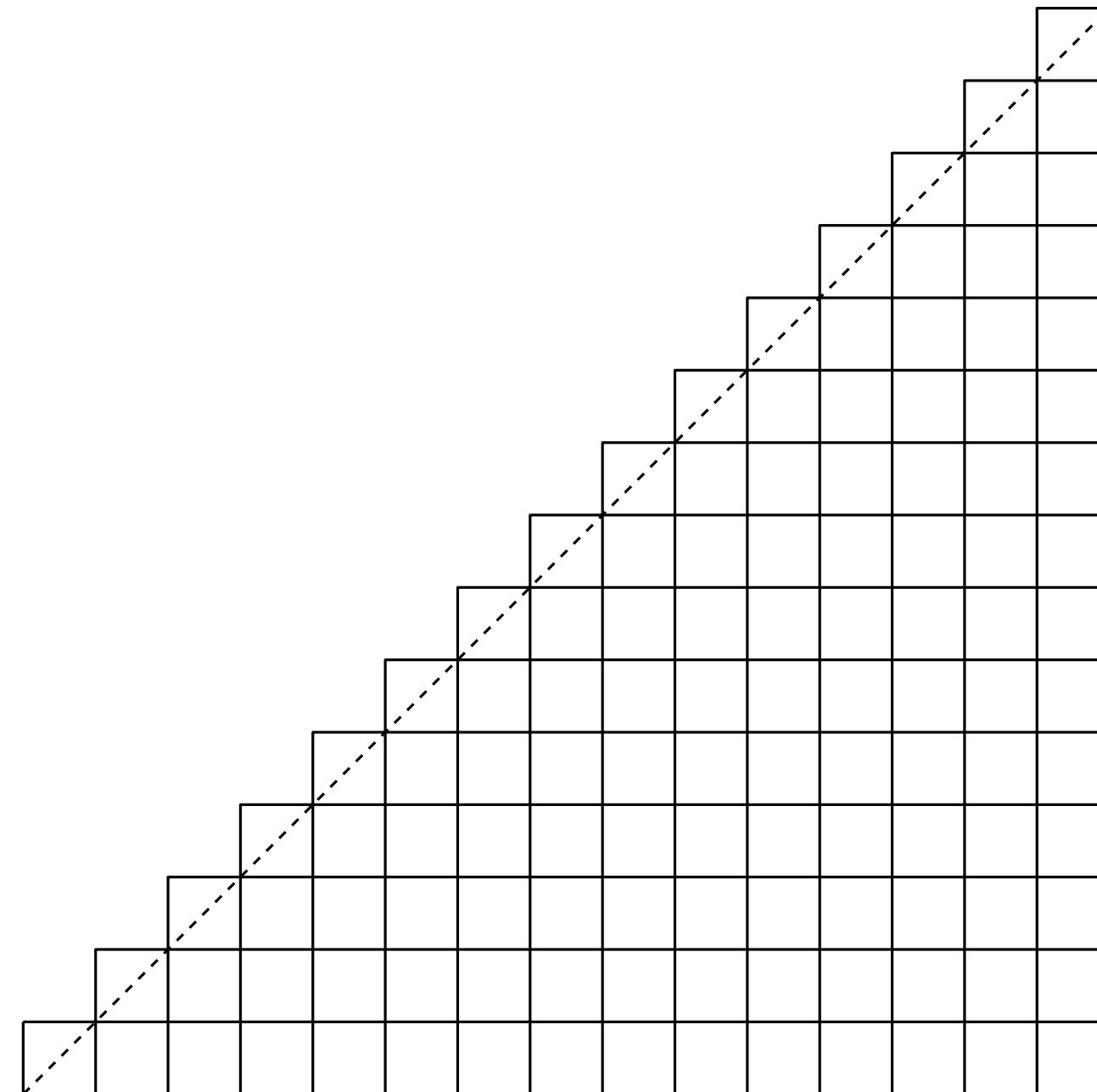
Let L be a set of rectangulation patterns and denote by $R_n^w(L)$ and $R_n^s(L)$ the set of weak and, respectively, strong rectangulations of size n that avoid all patterns in L .

Our results cover all the (essentially different) cases where $L \subseteq \{\top, \perp, \vdash, \dashv\}$.



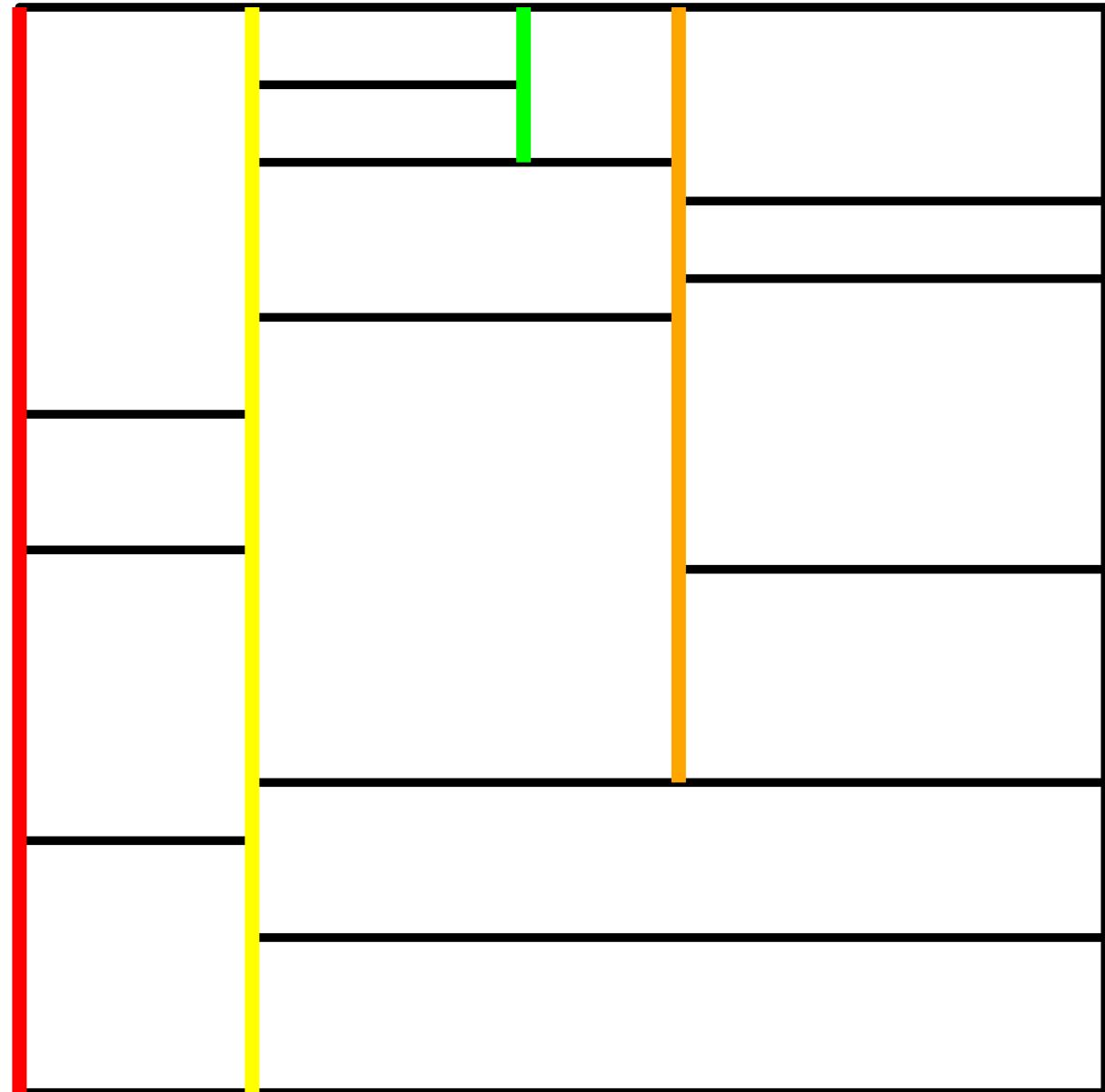
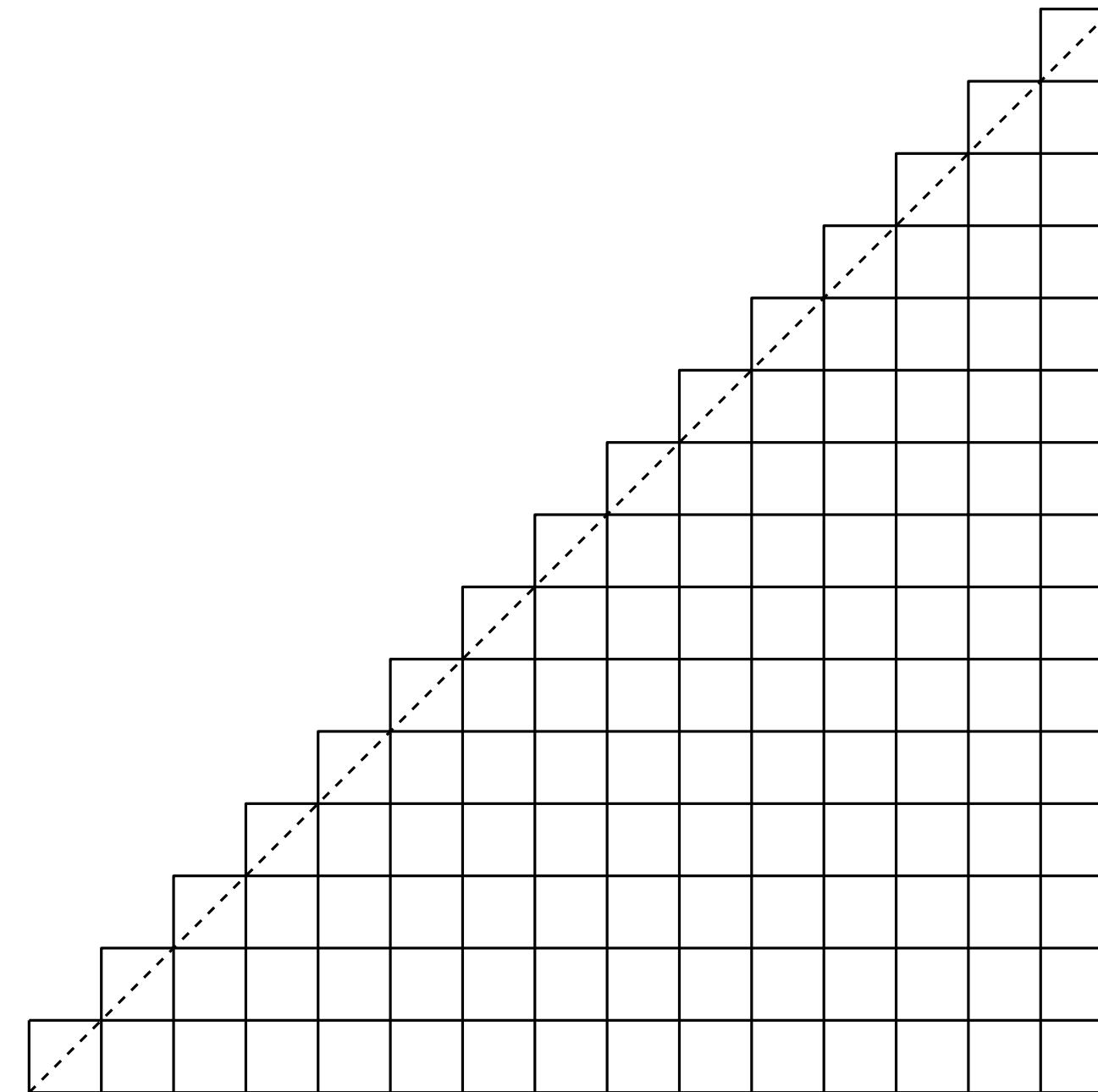
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



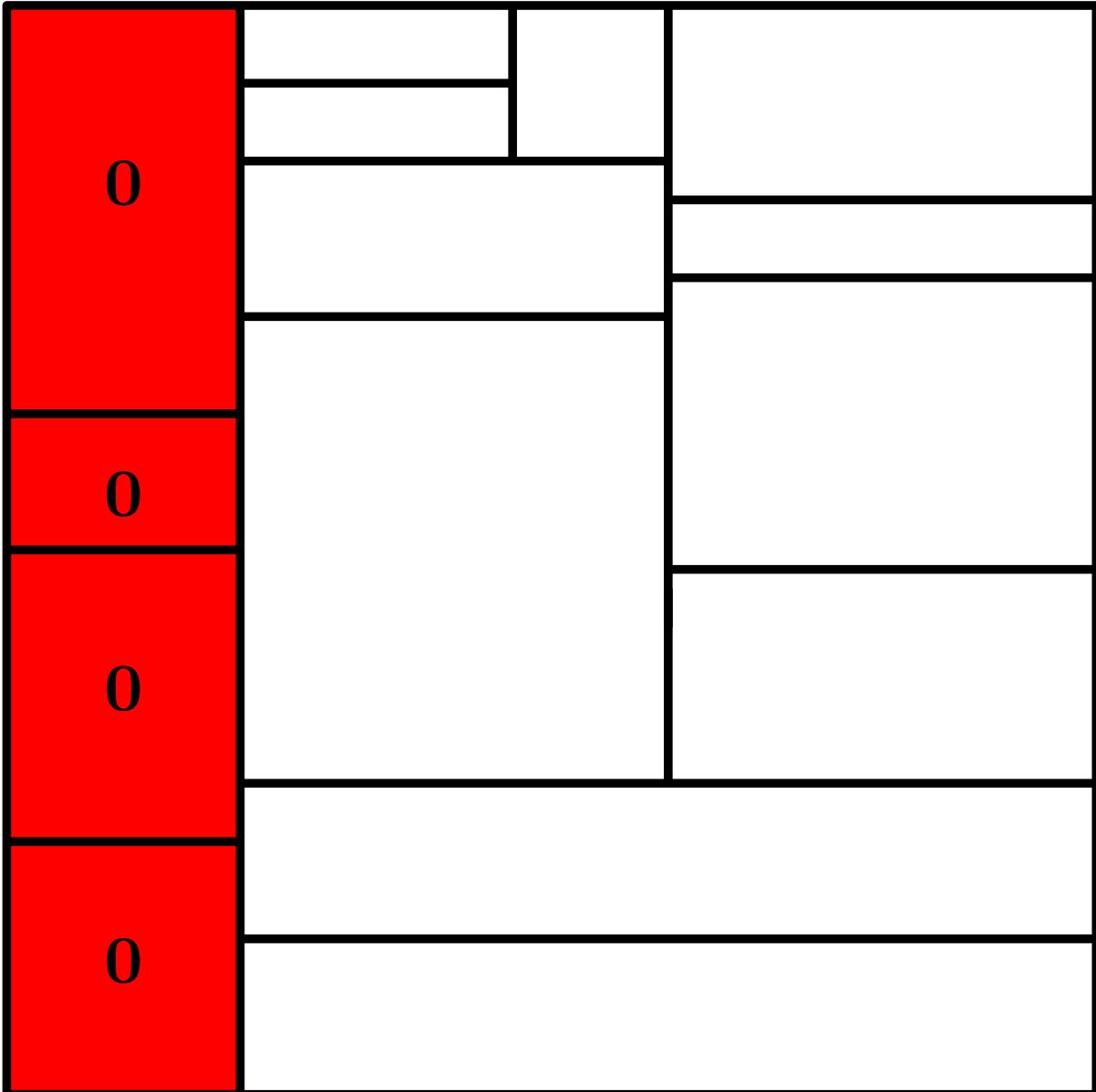
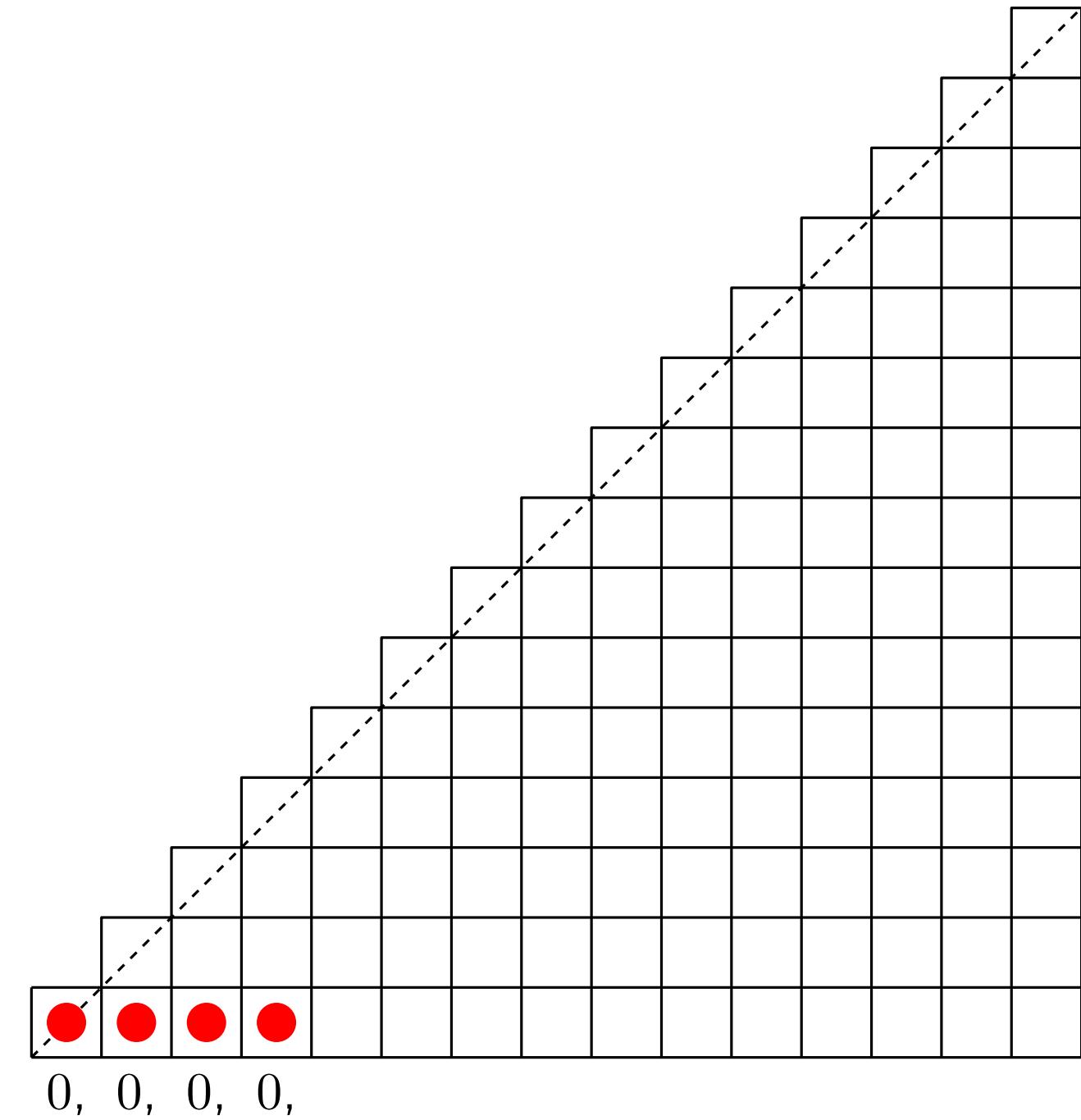
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



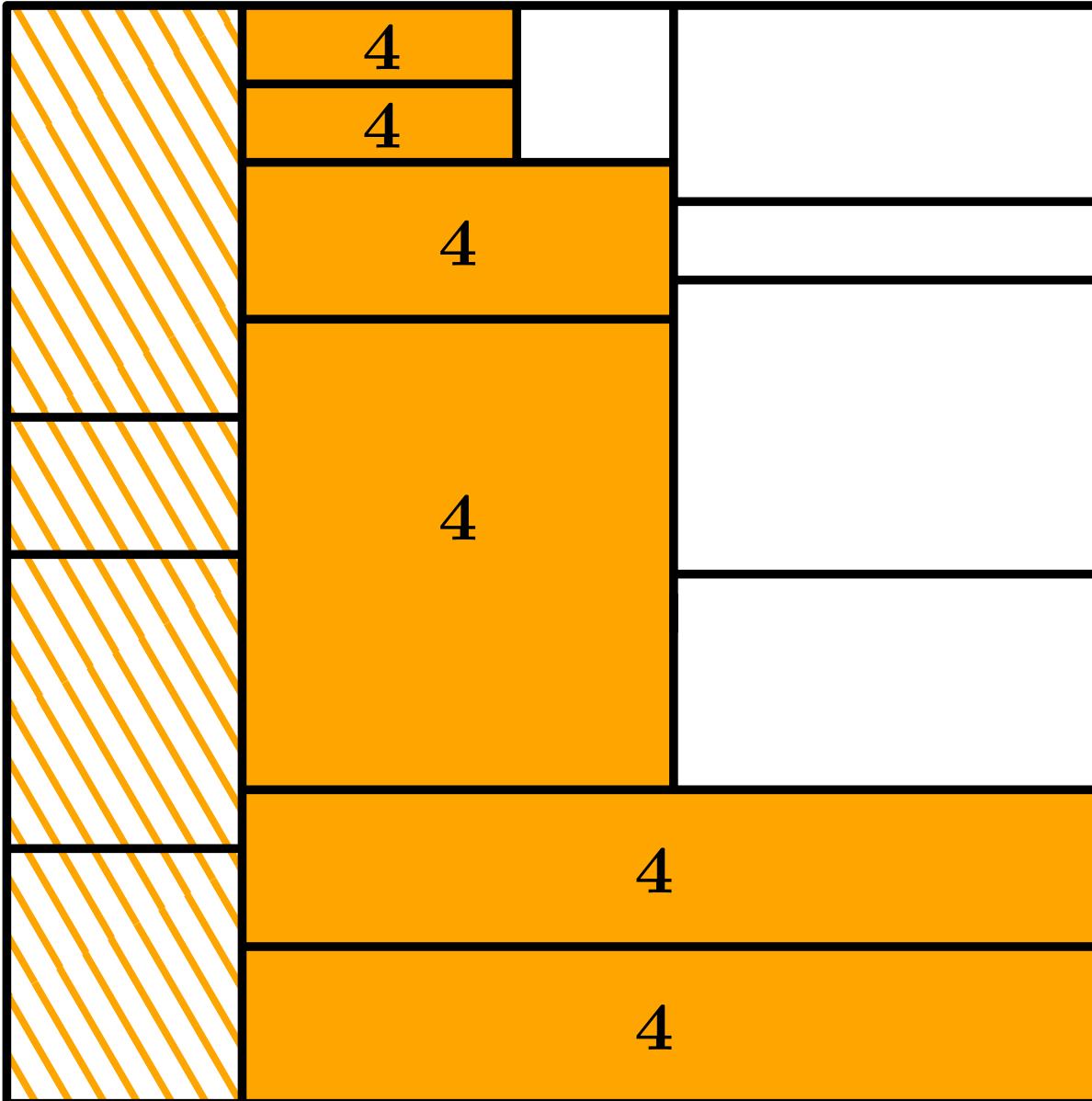
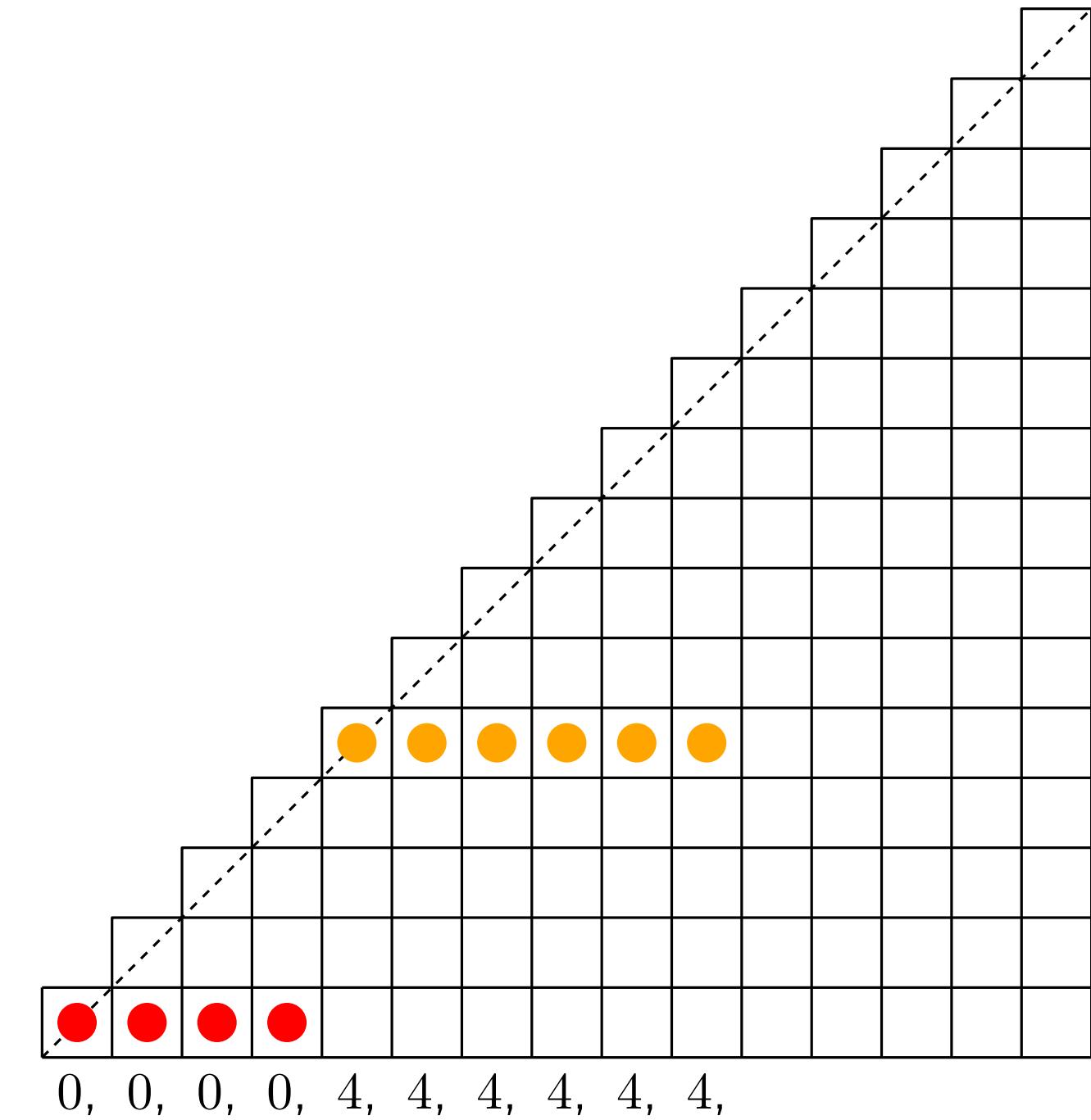
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



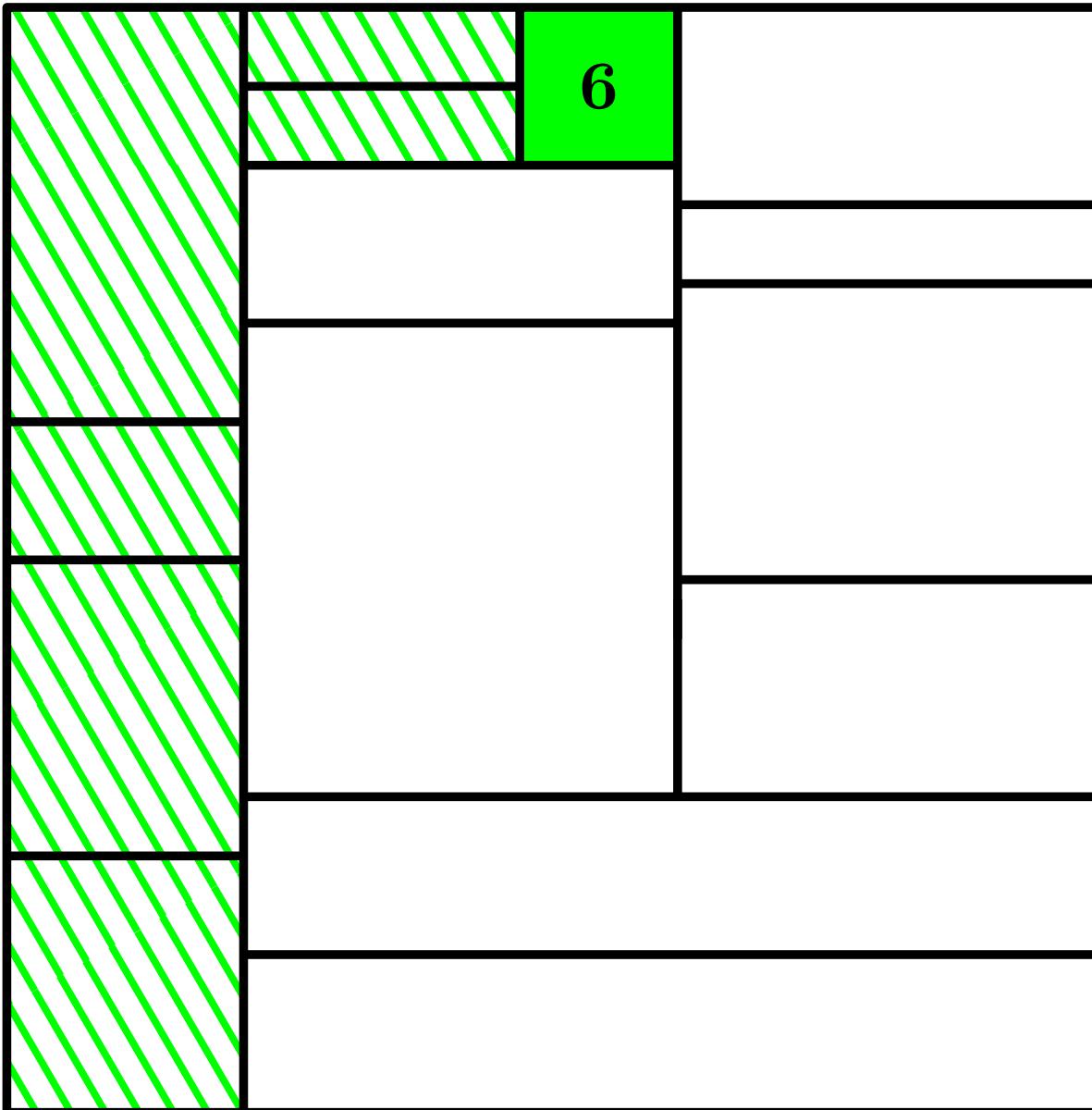
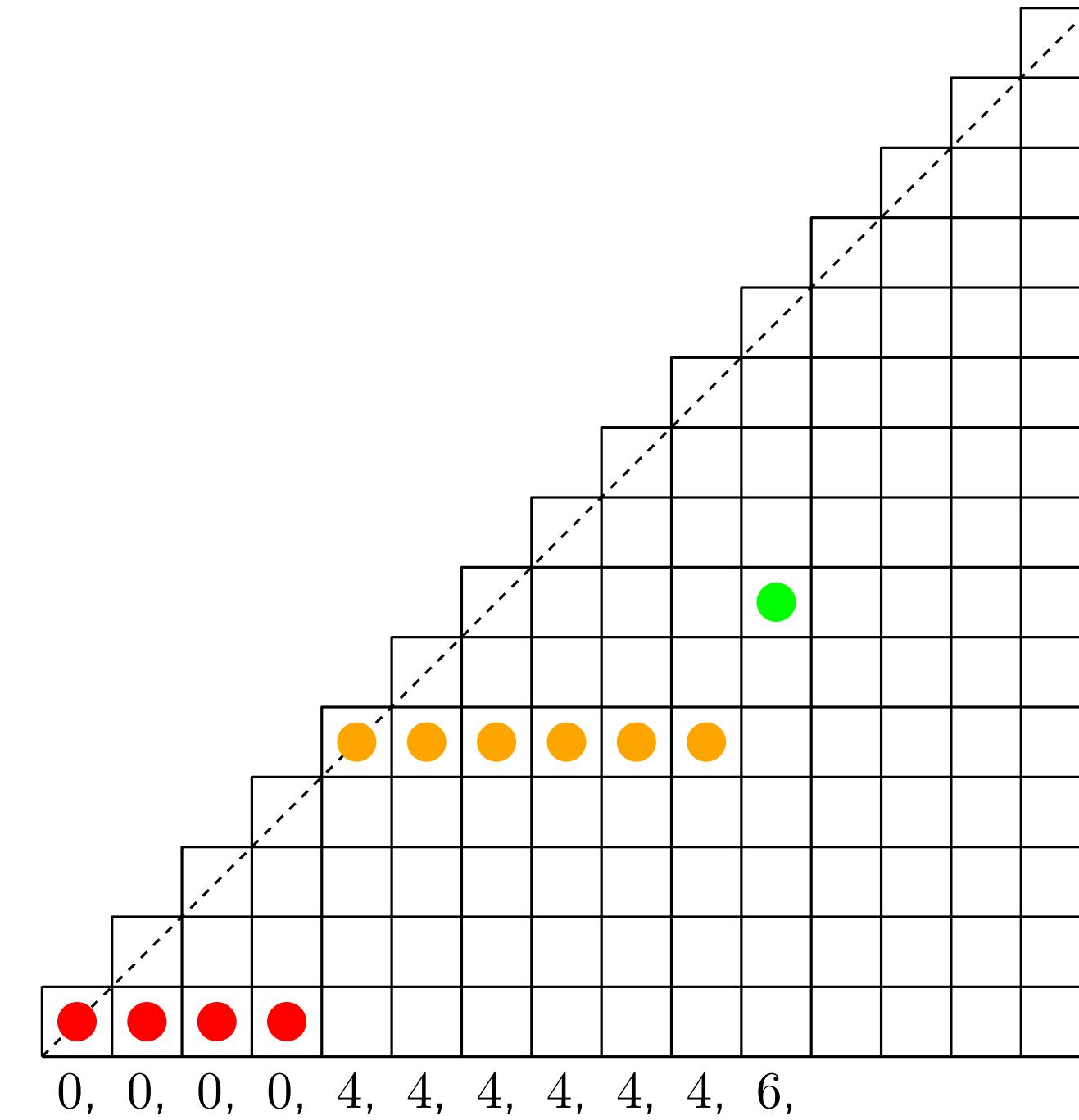
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



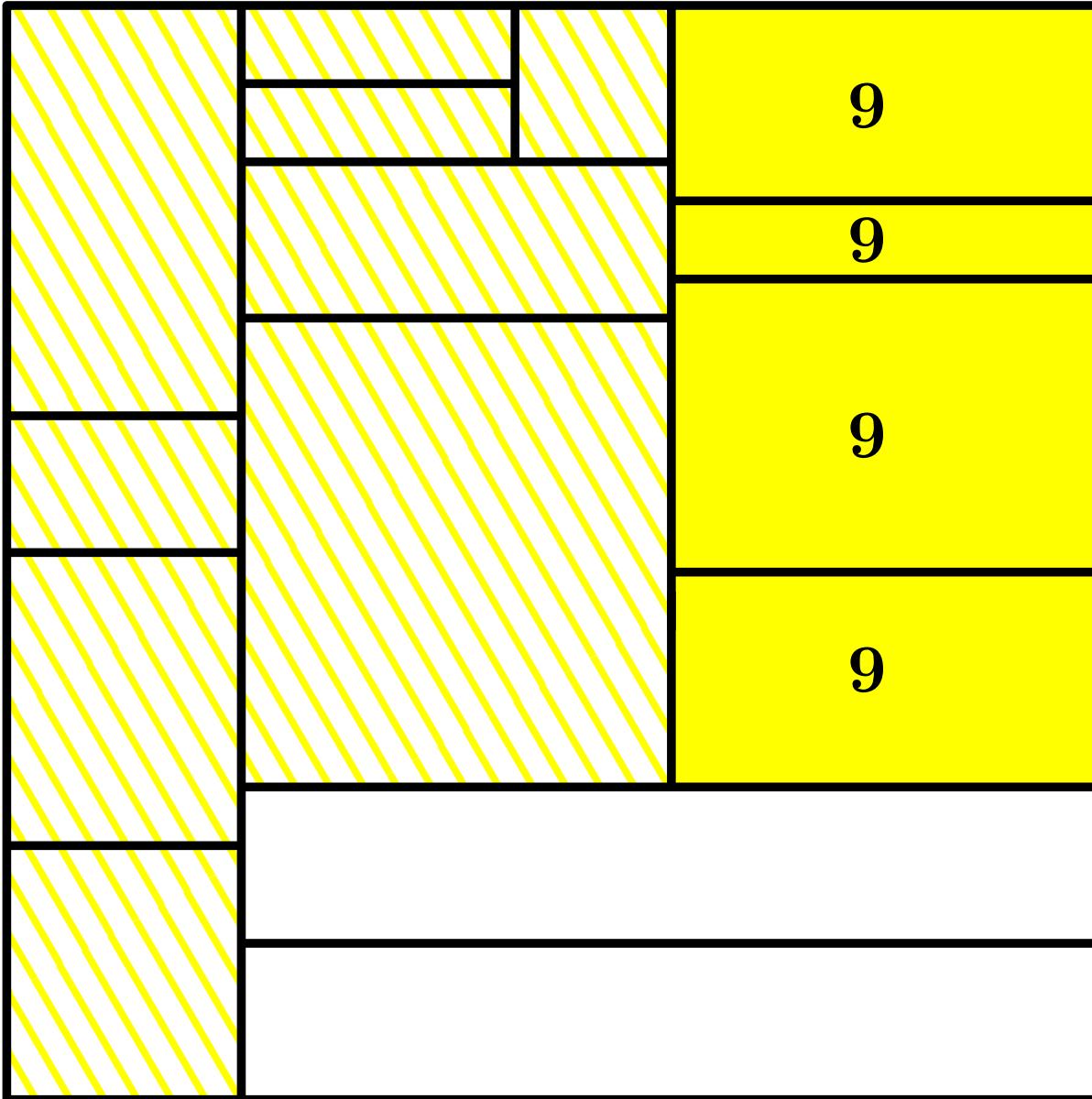
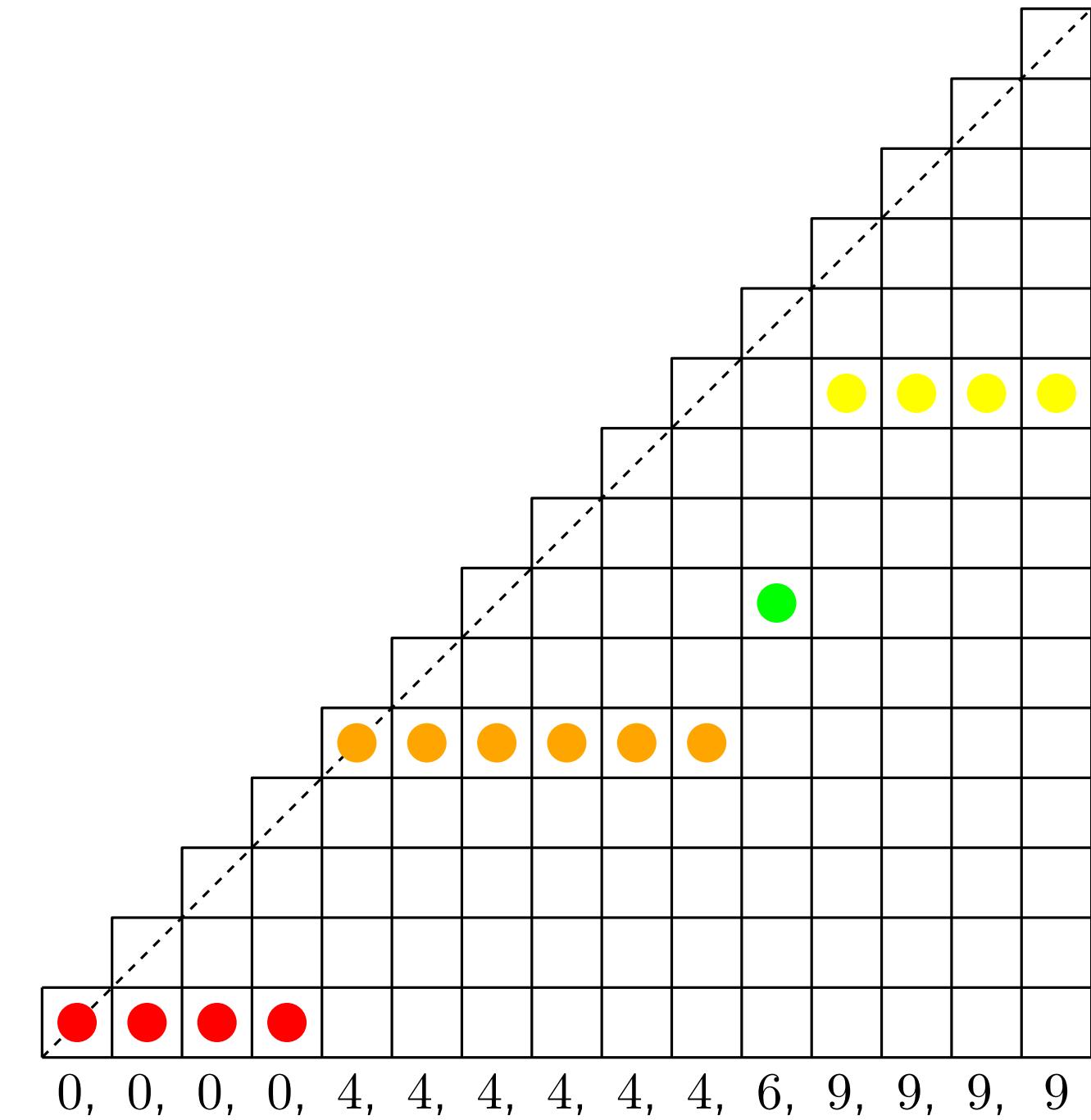
$$|R_n^w(\tau)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



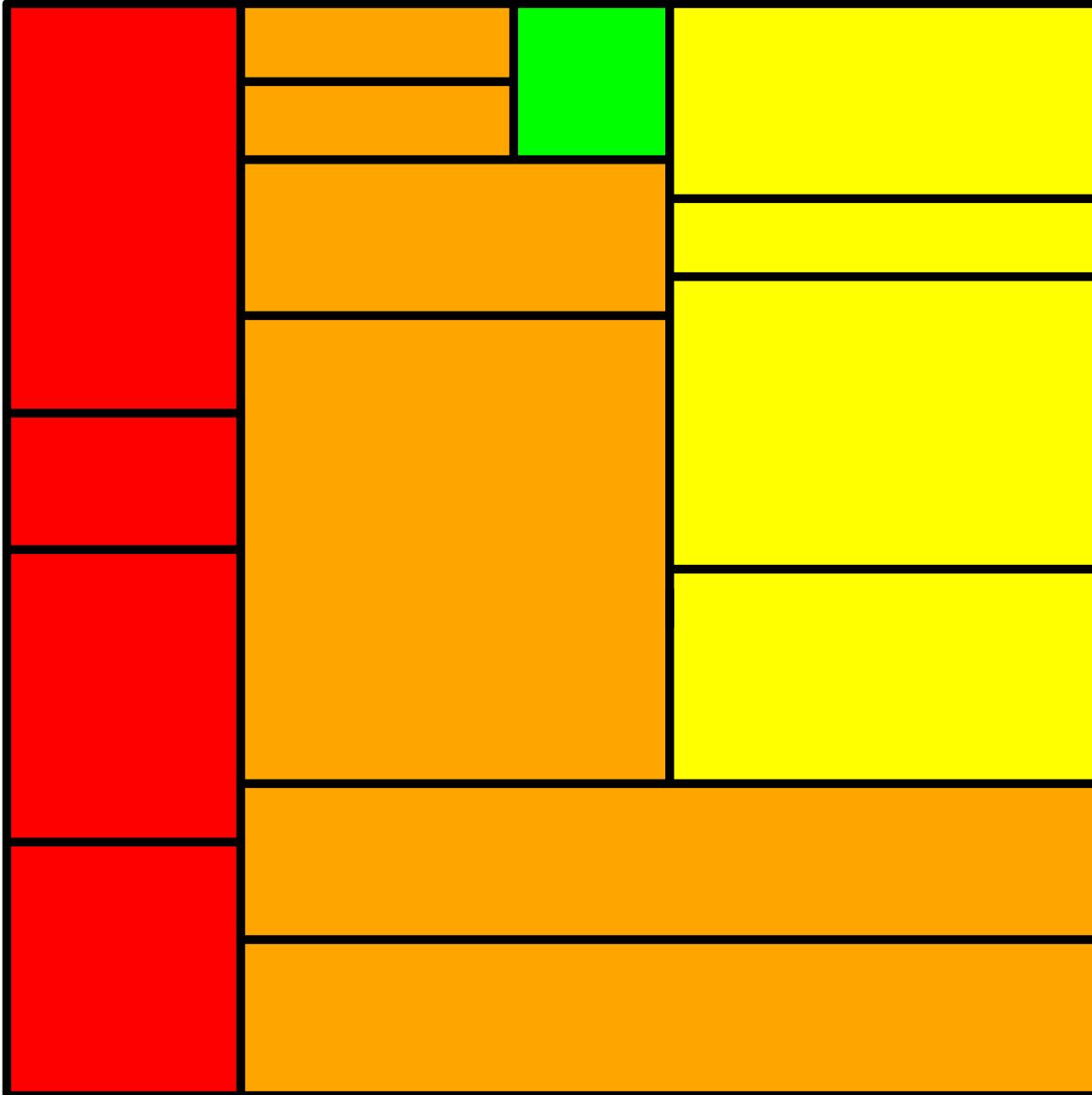
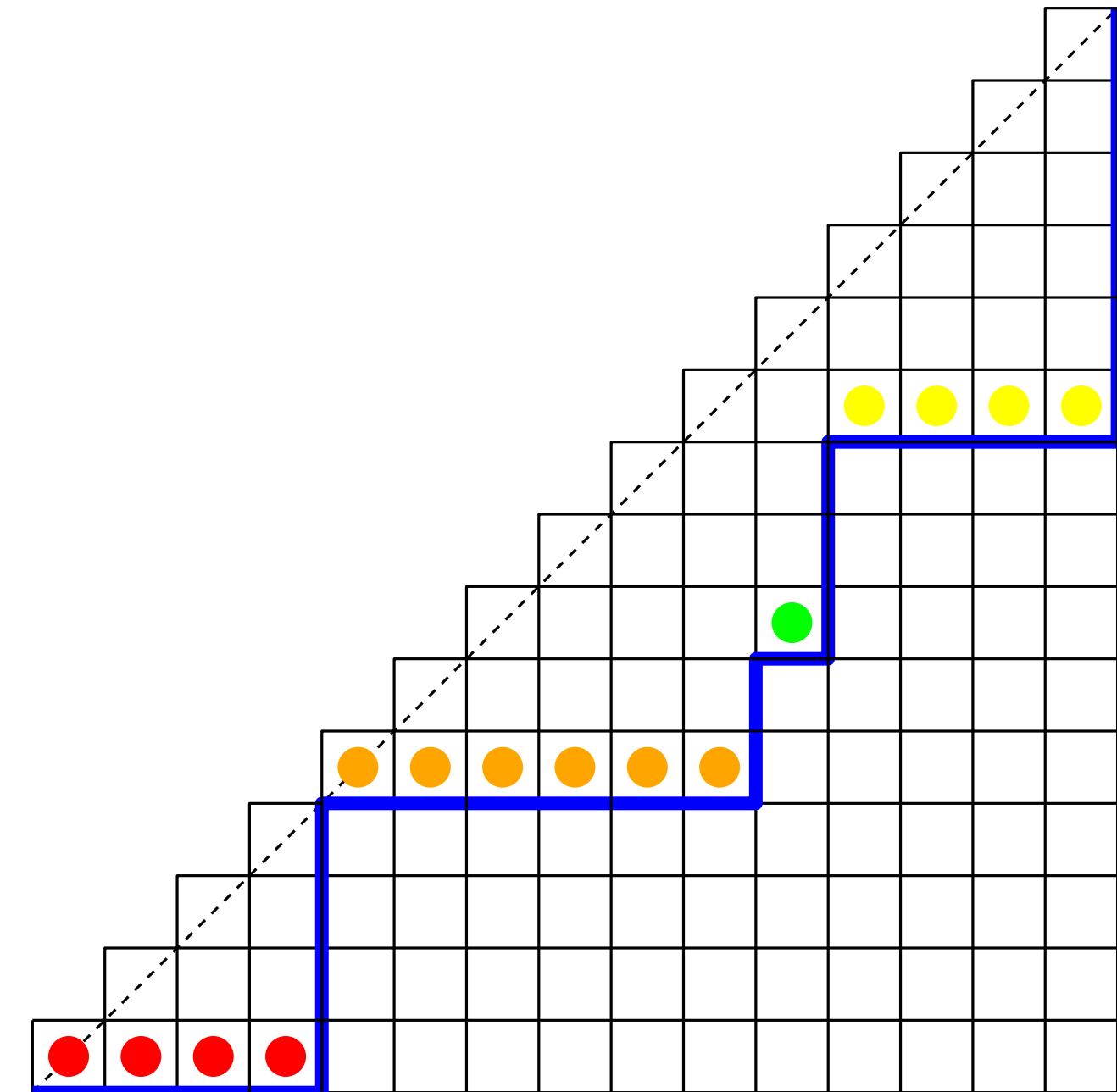
$$|R_n^w(\tau)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



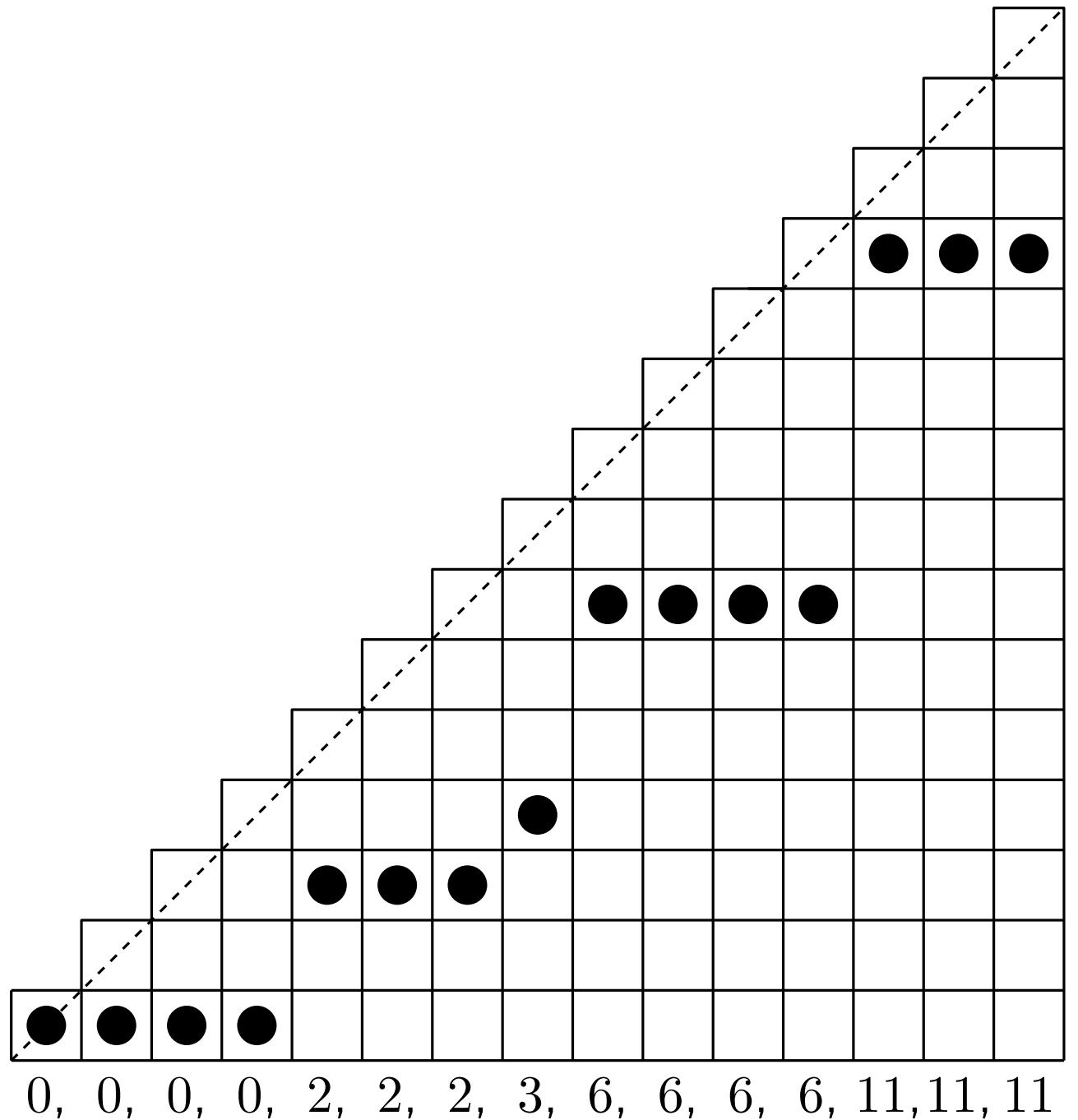
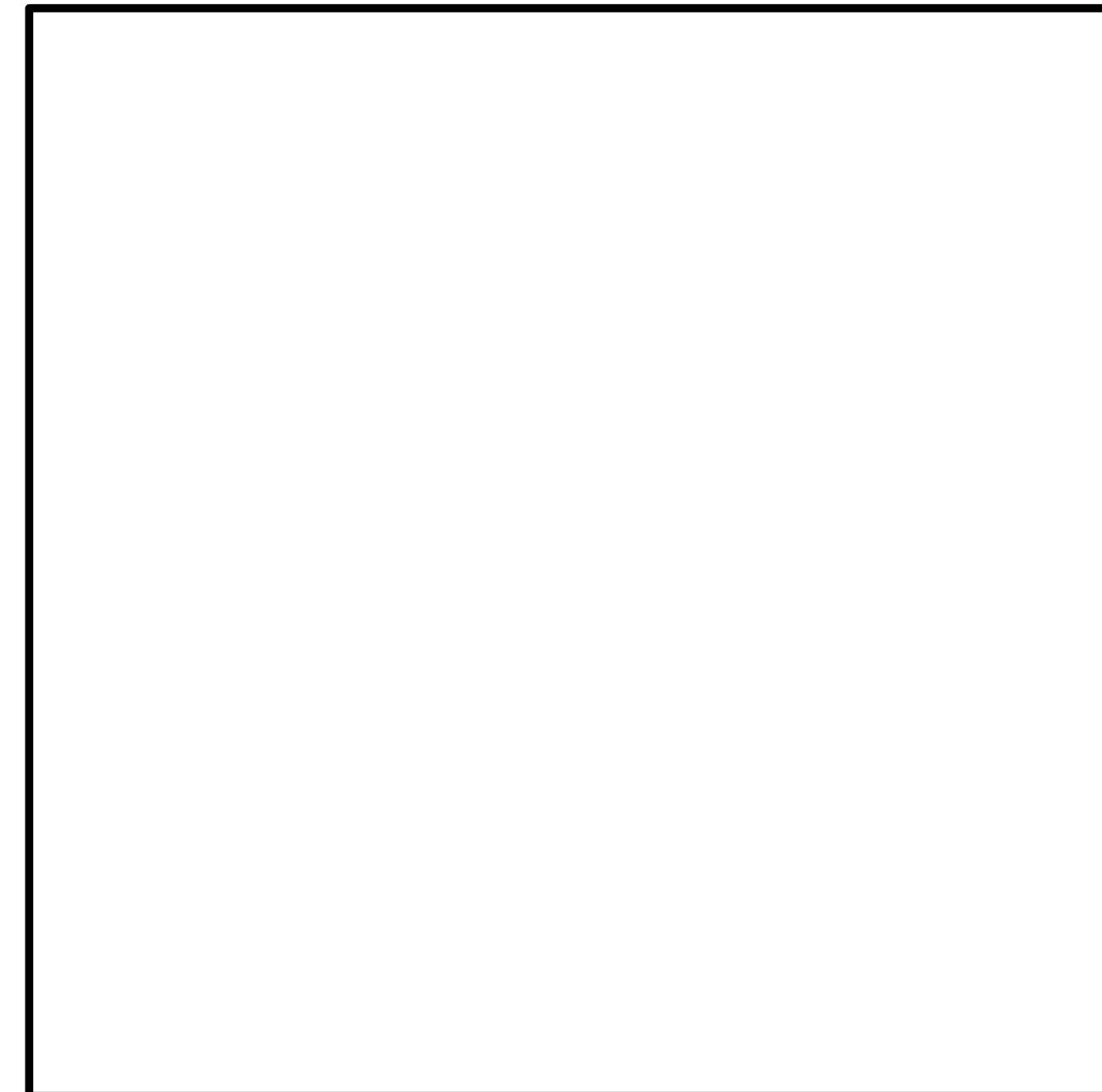
$$|R_n^w(\tau)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



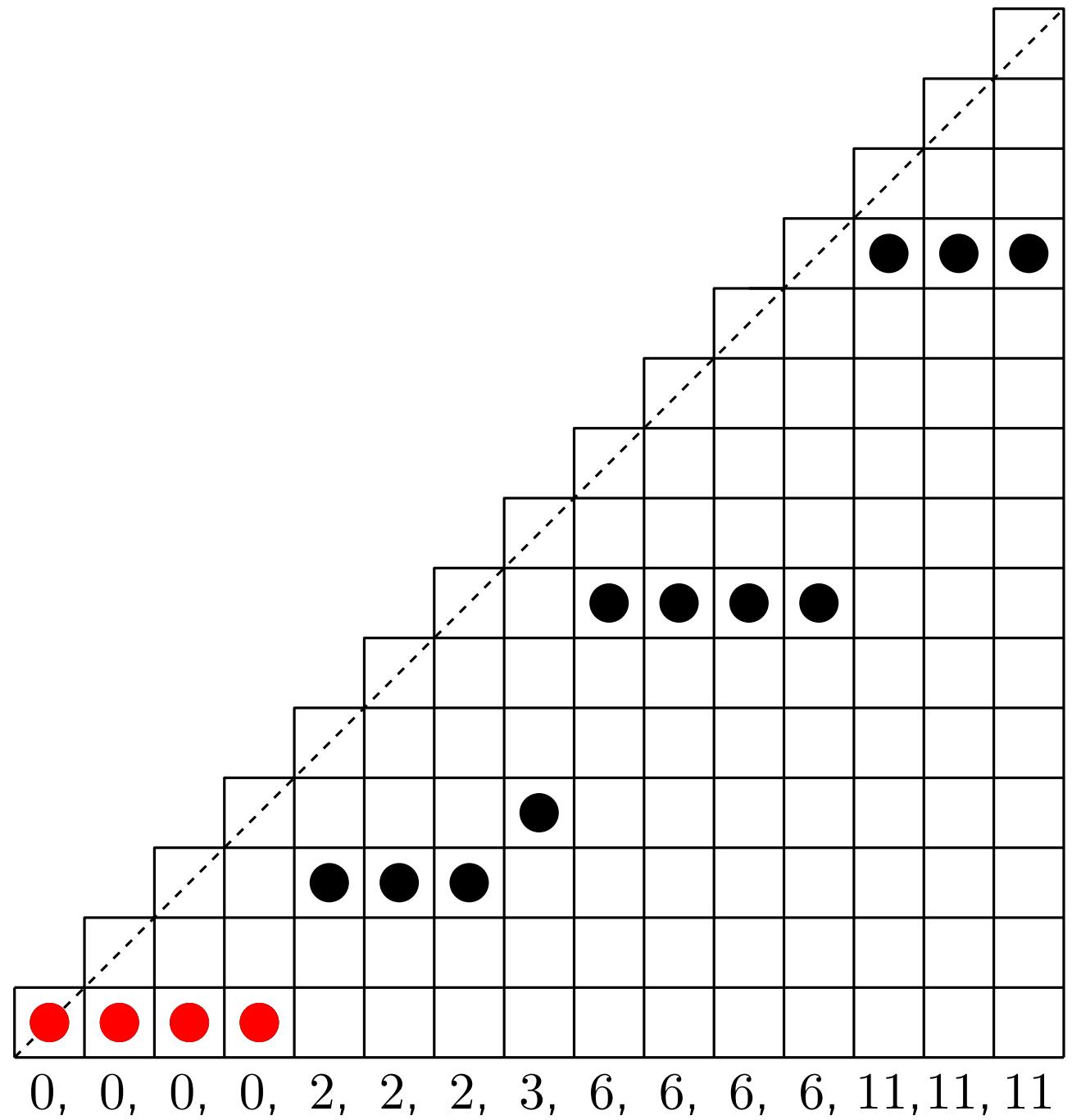
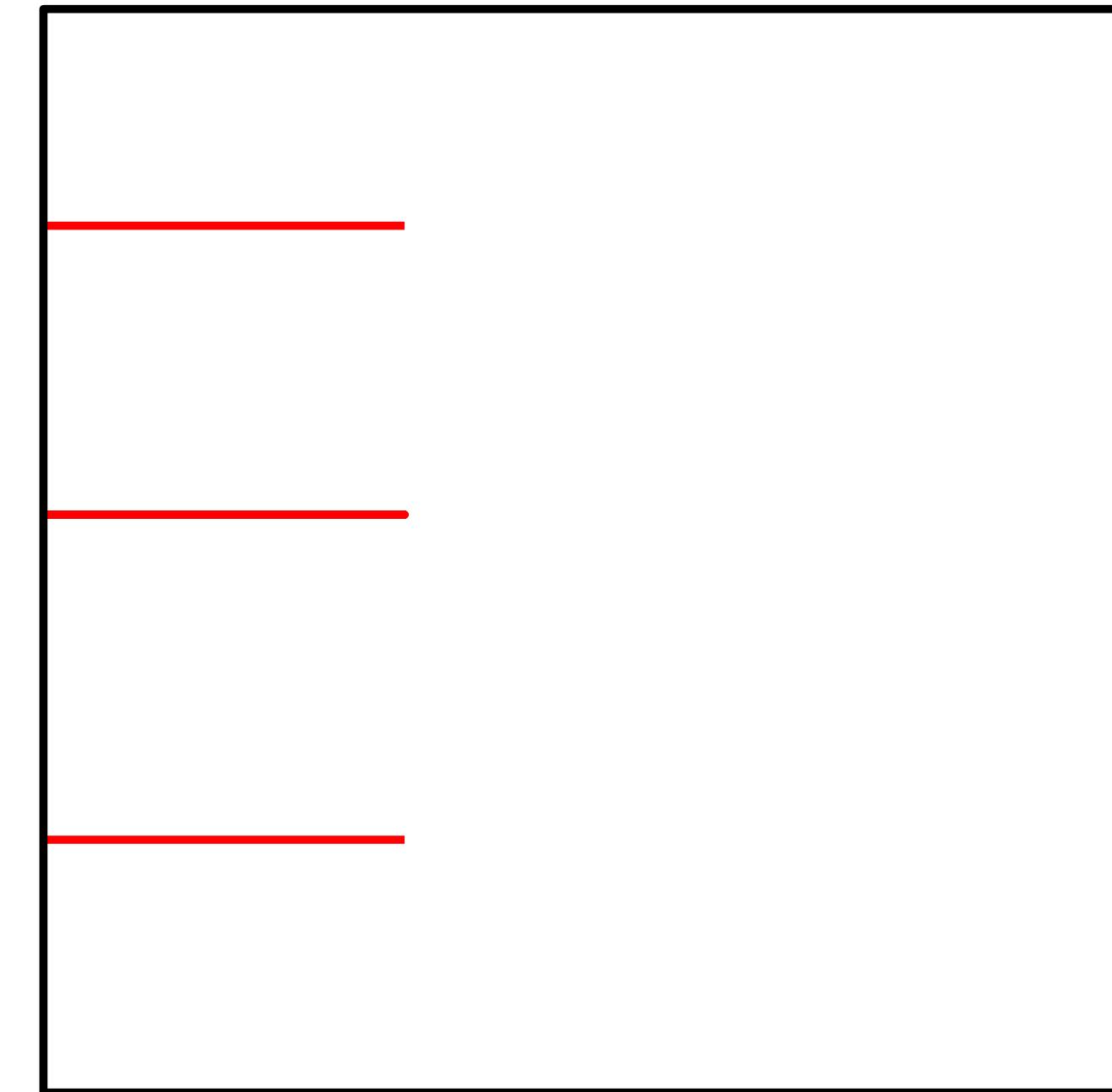
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



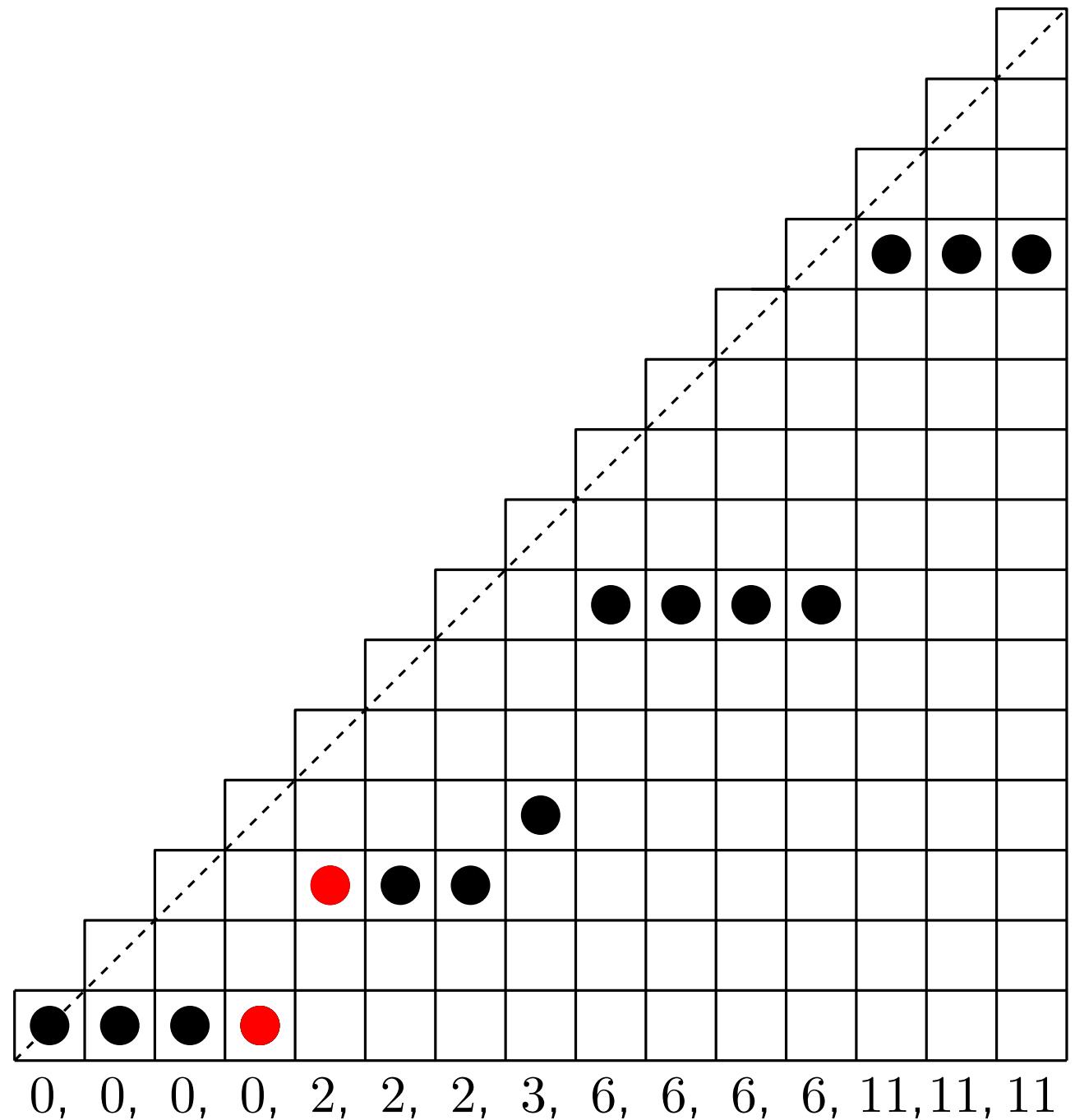
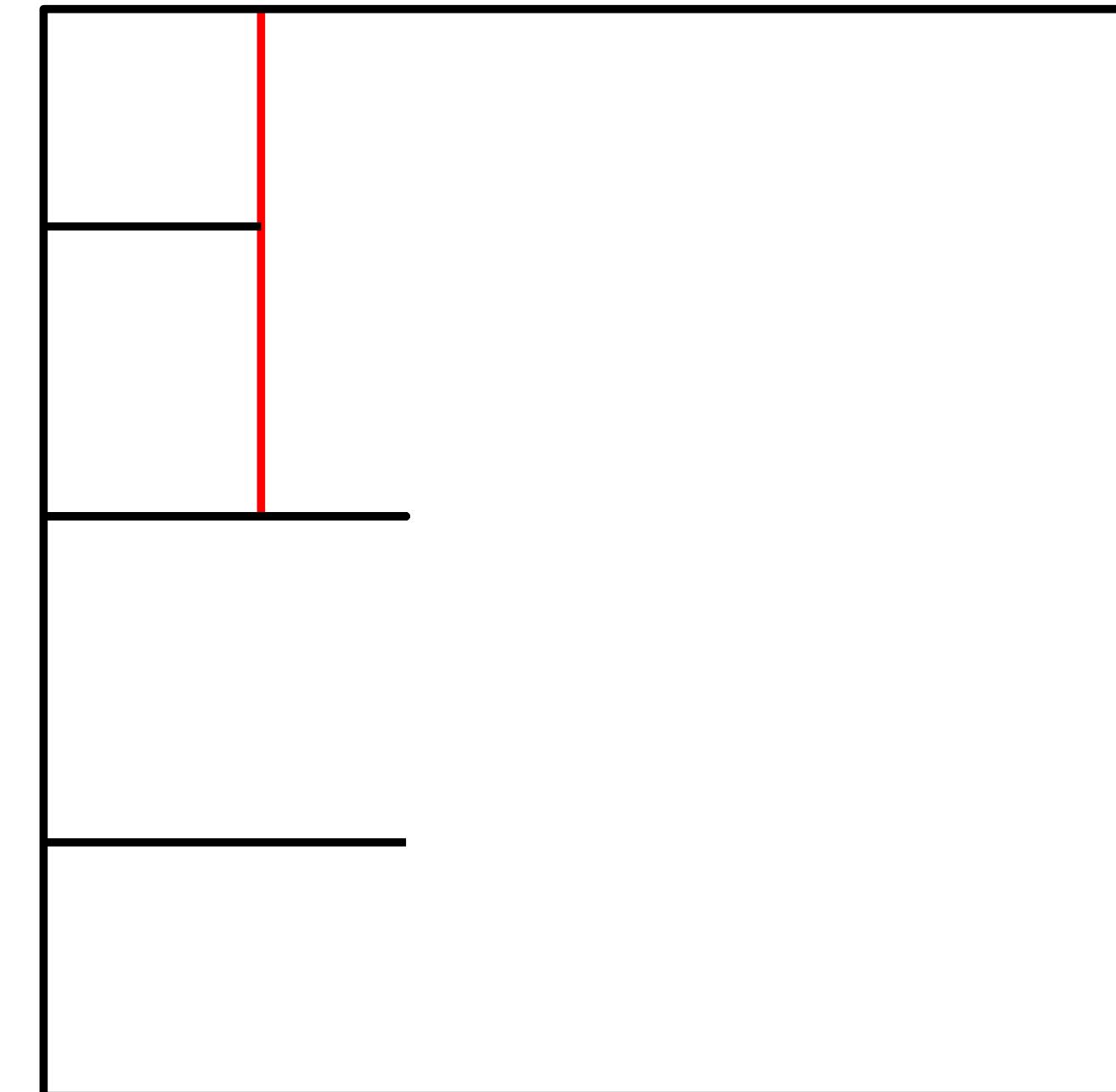
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



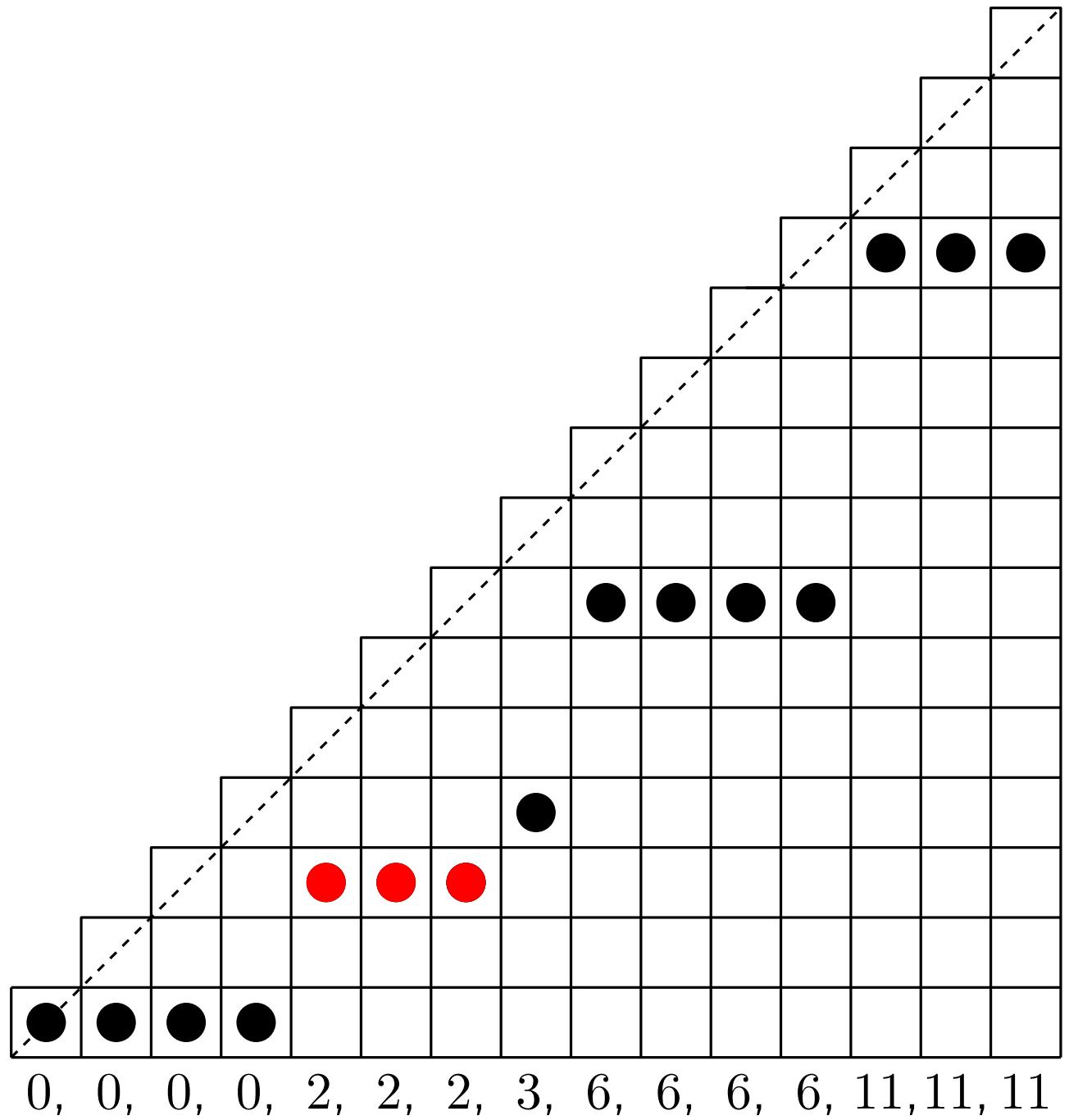
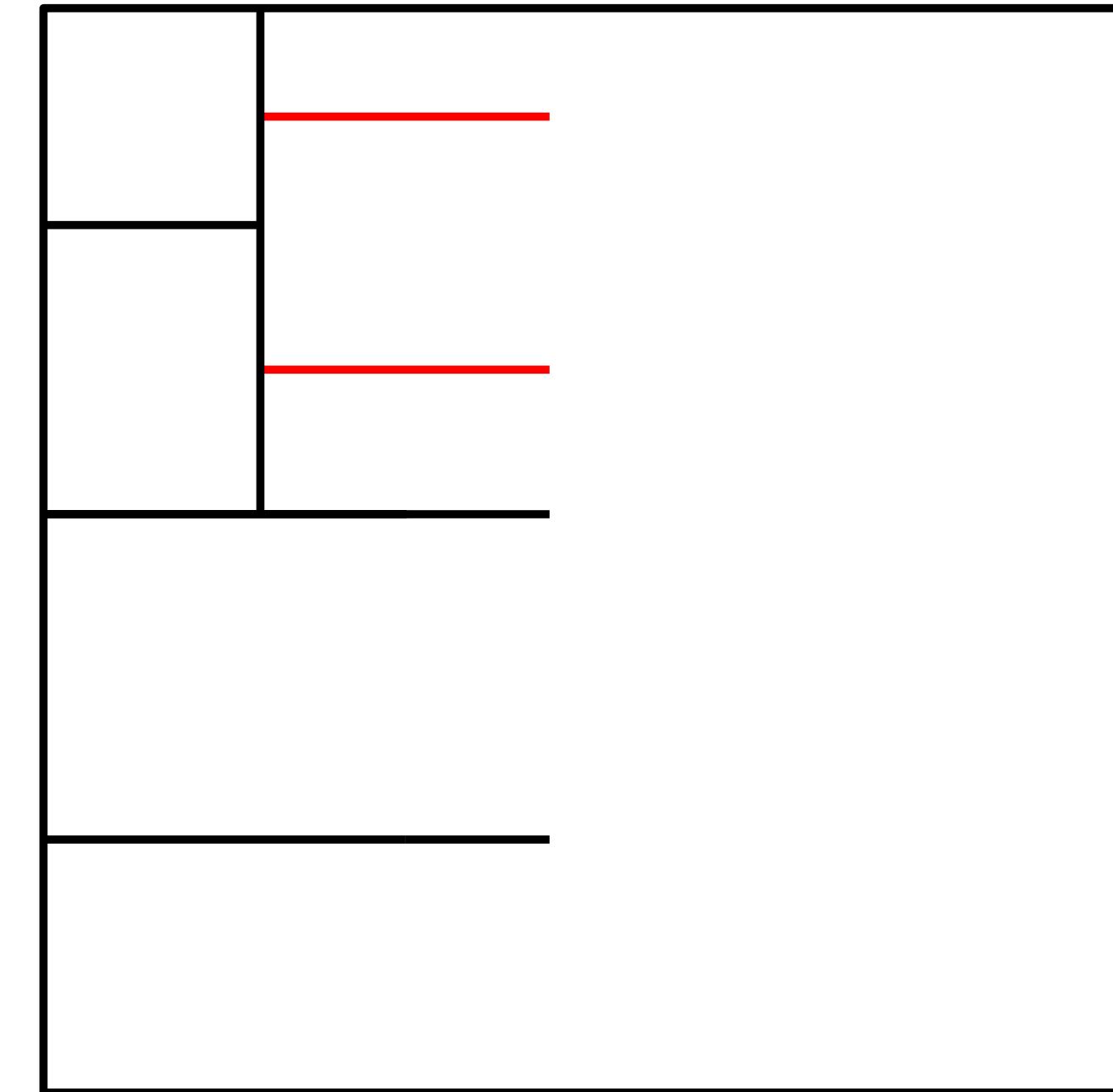
$$|R_n^w(\tau)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



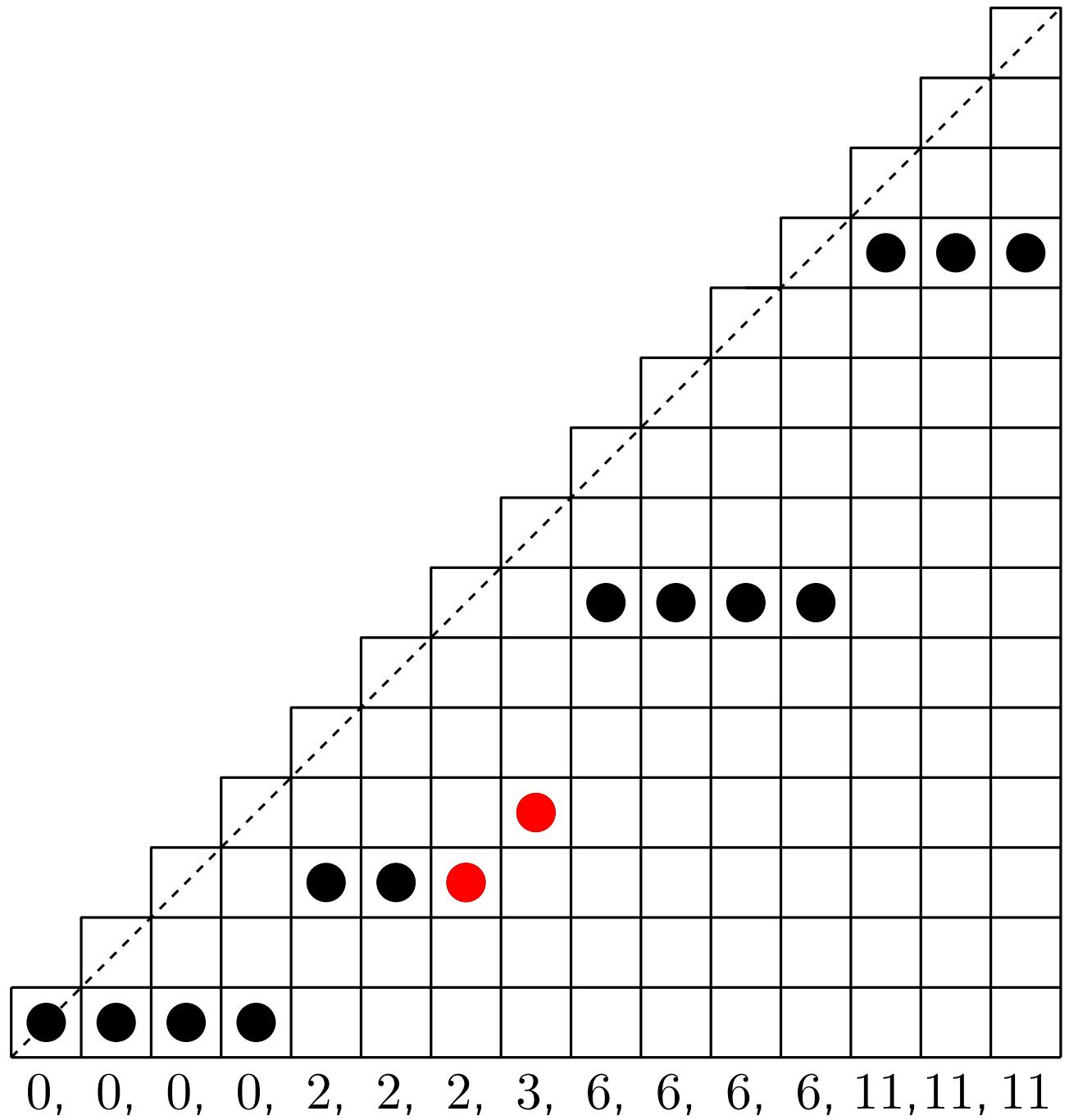
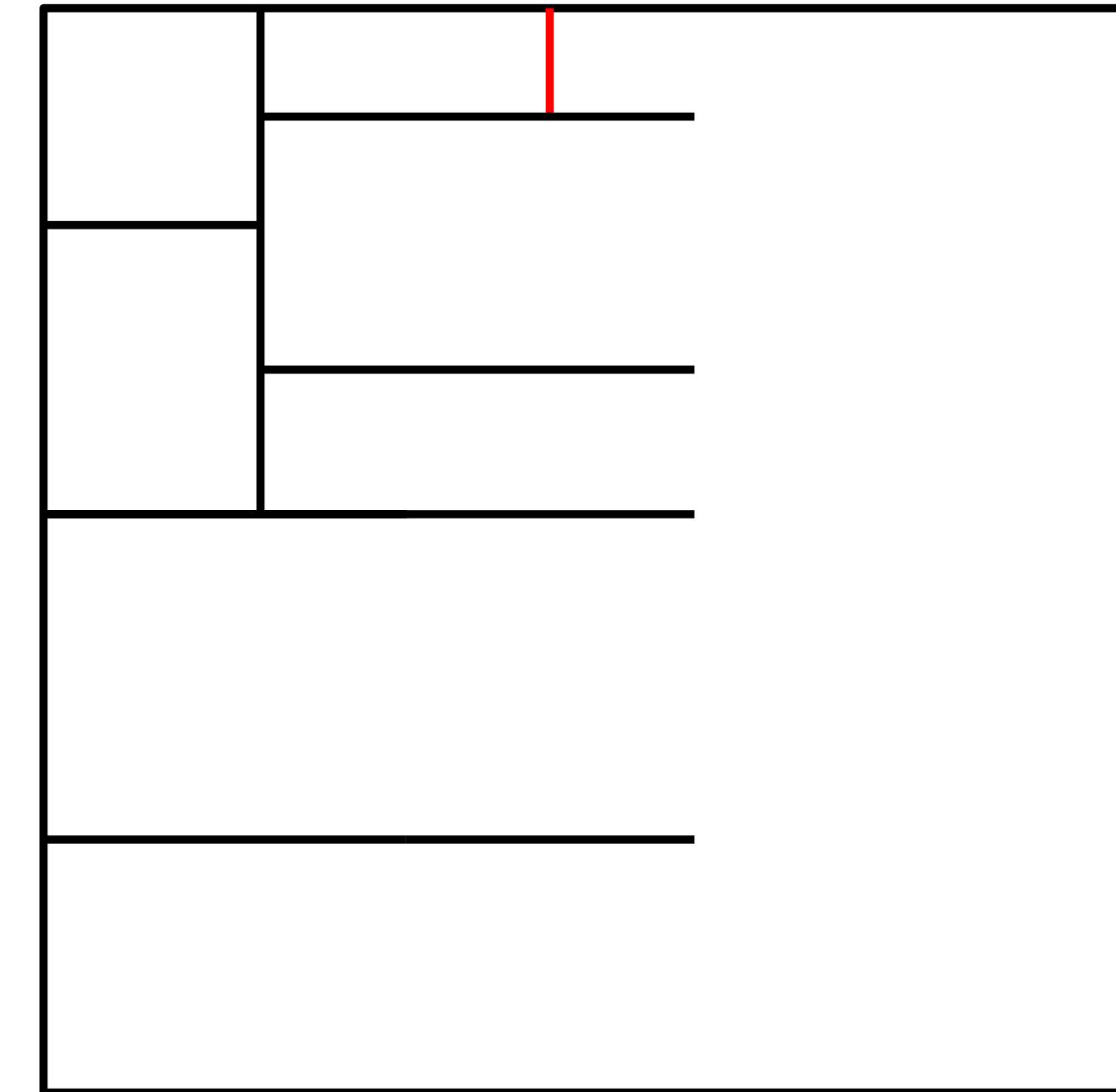
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



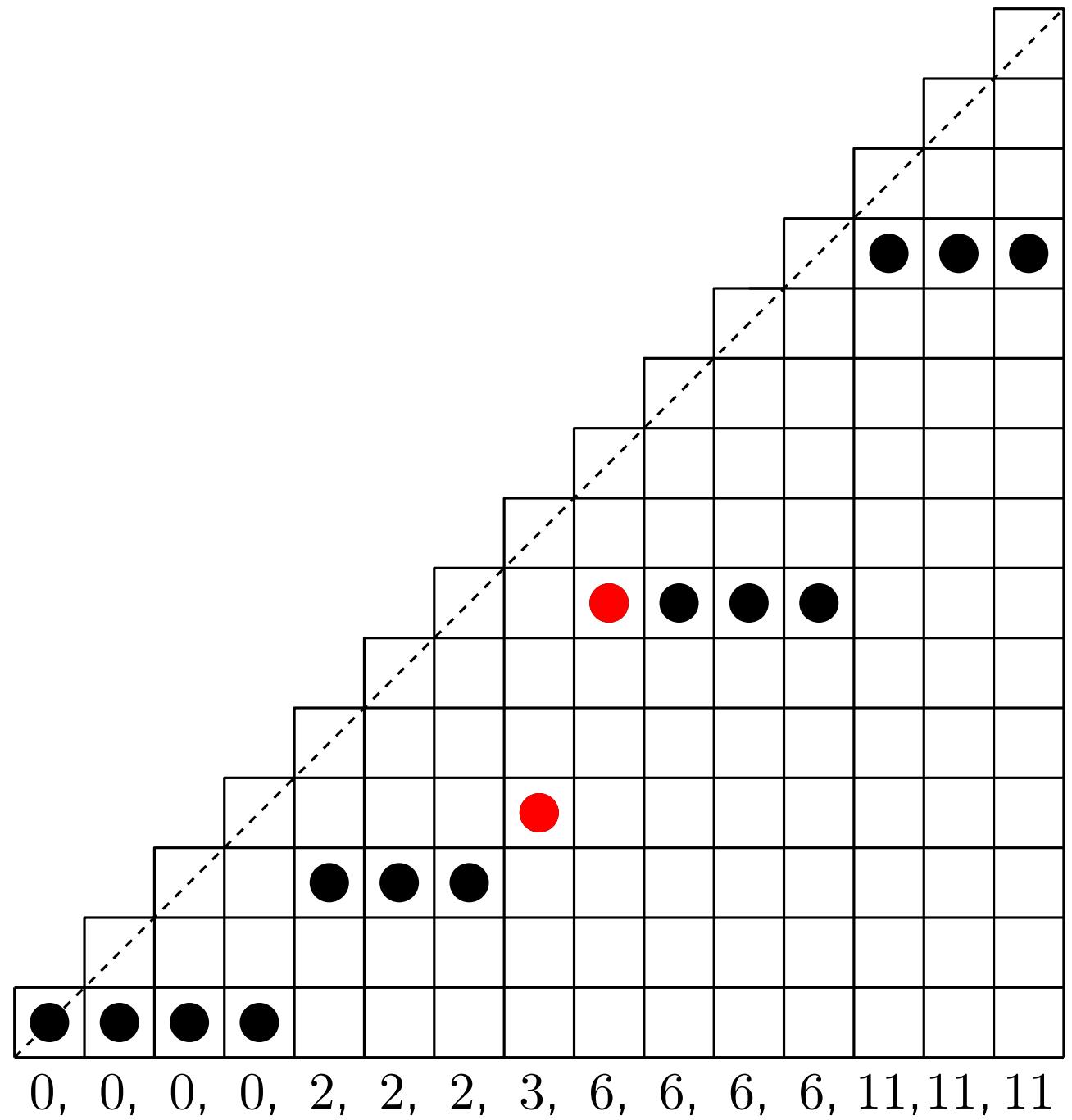
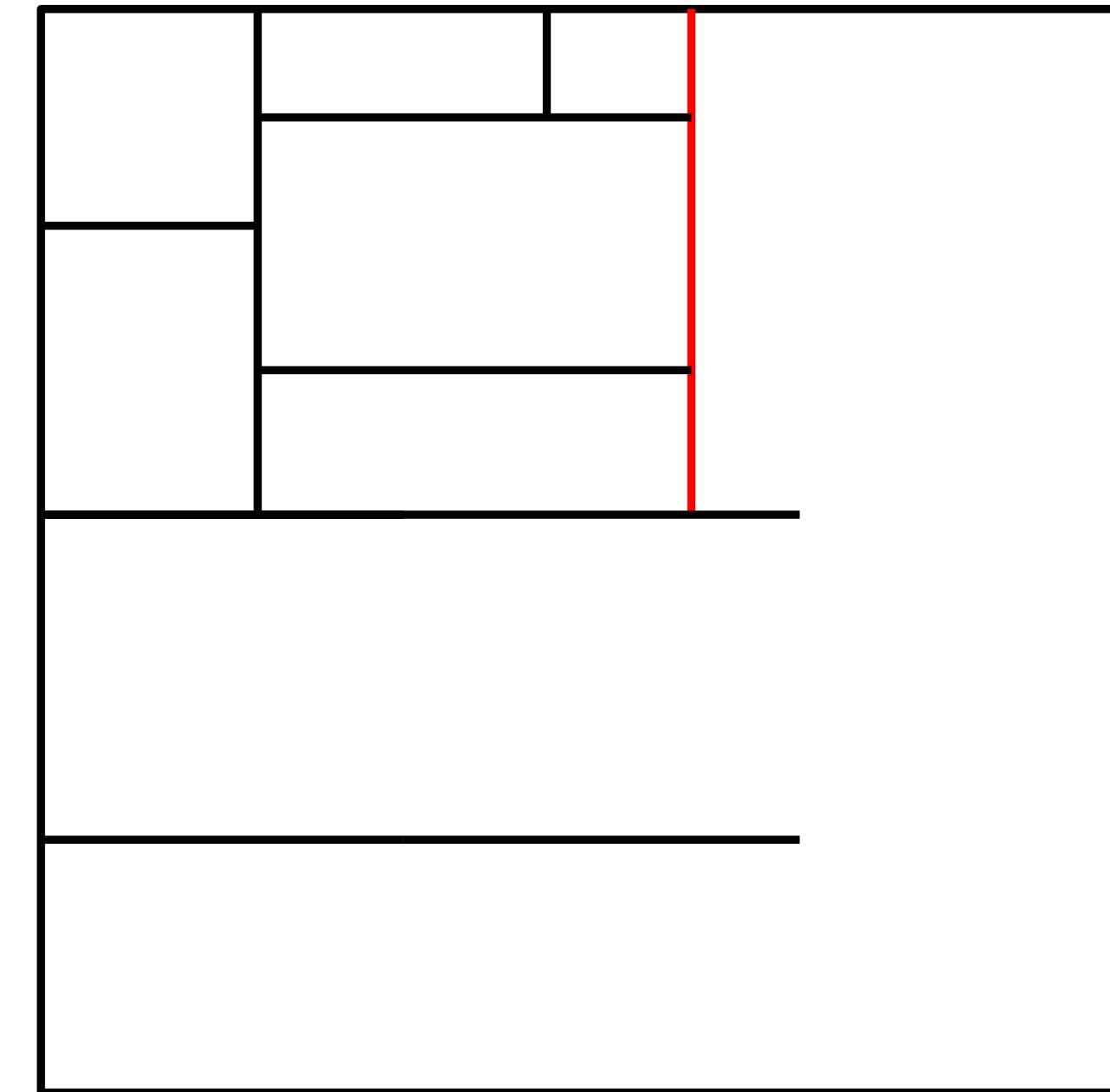
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



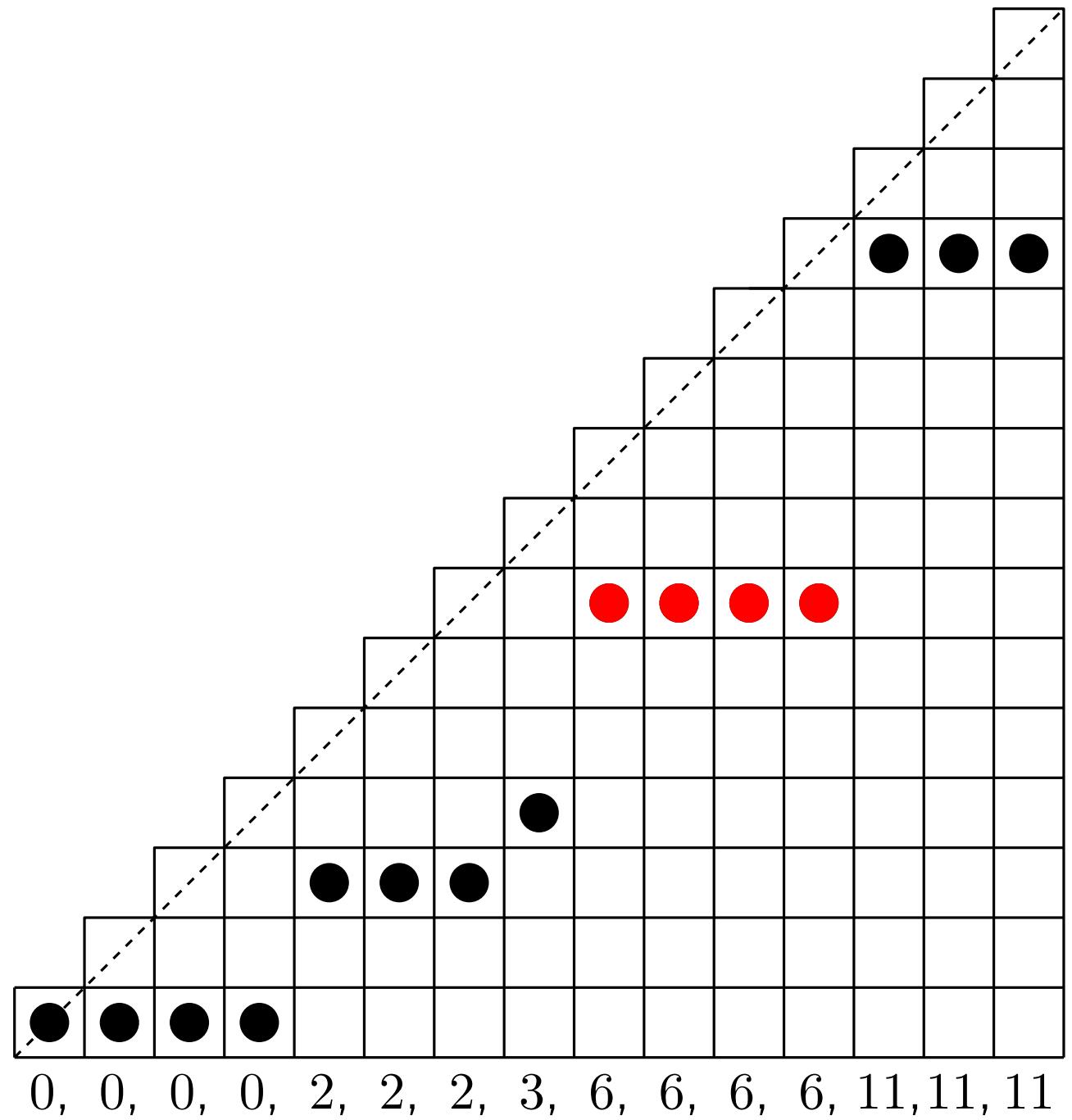
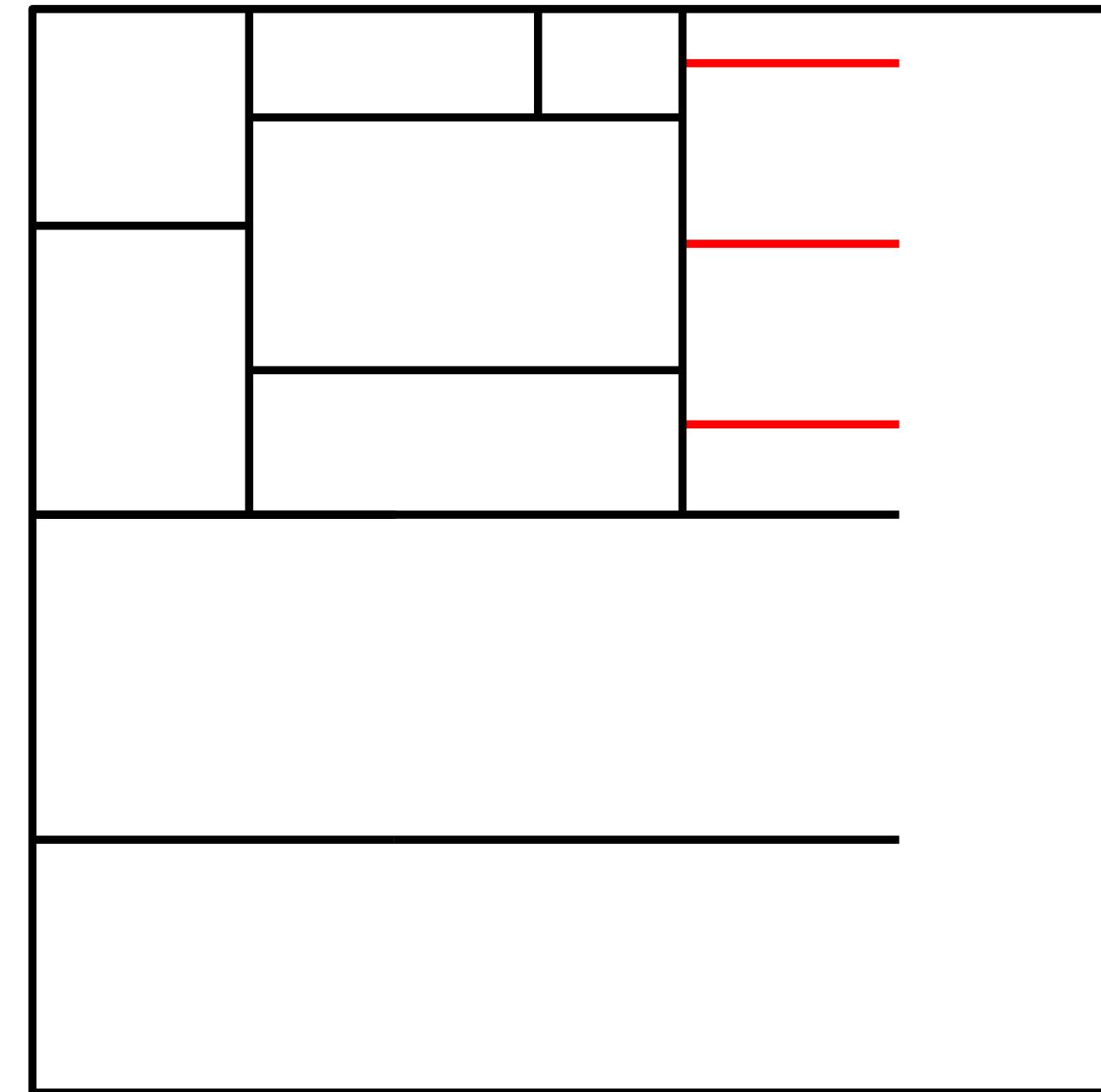
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



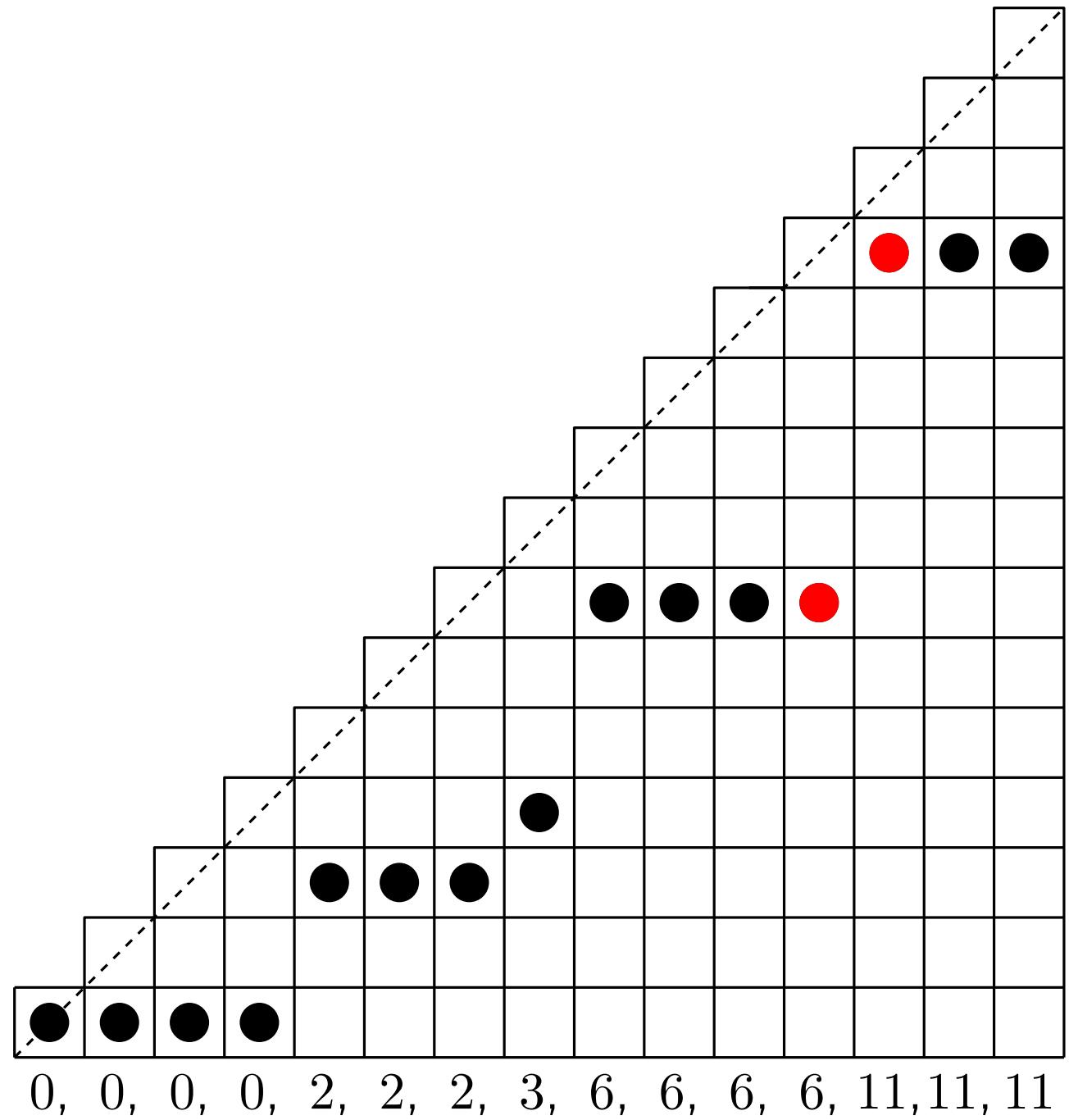
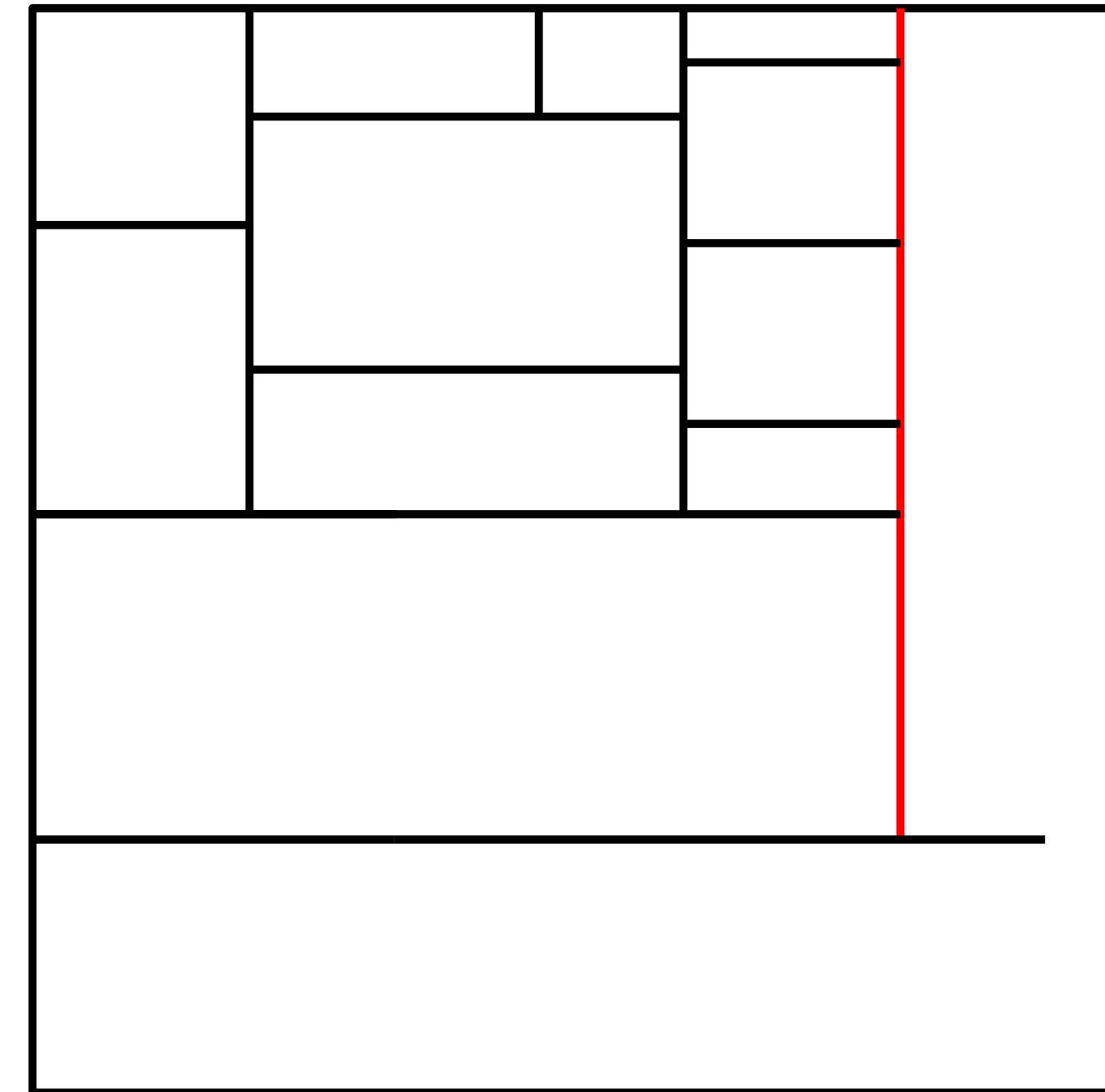
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



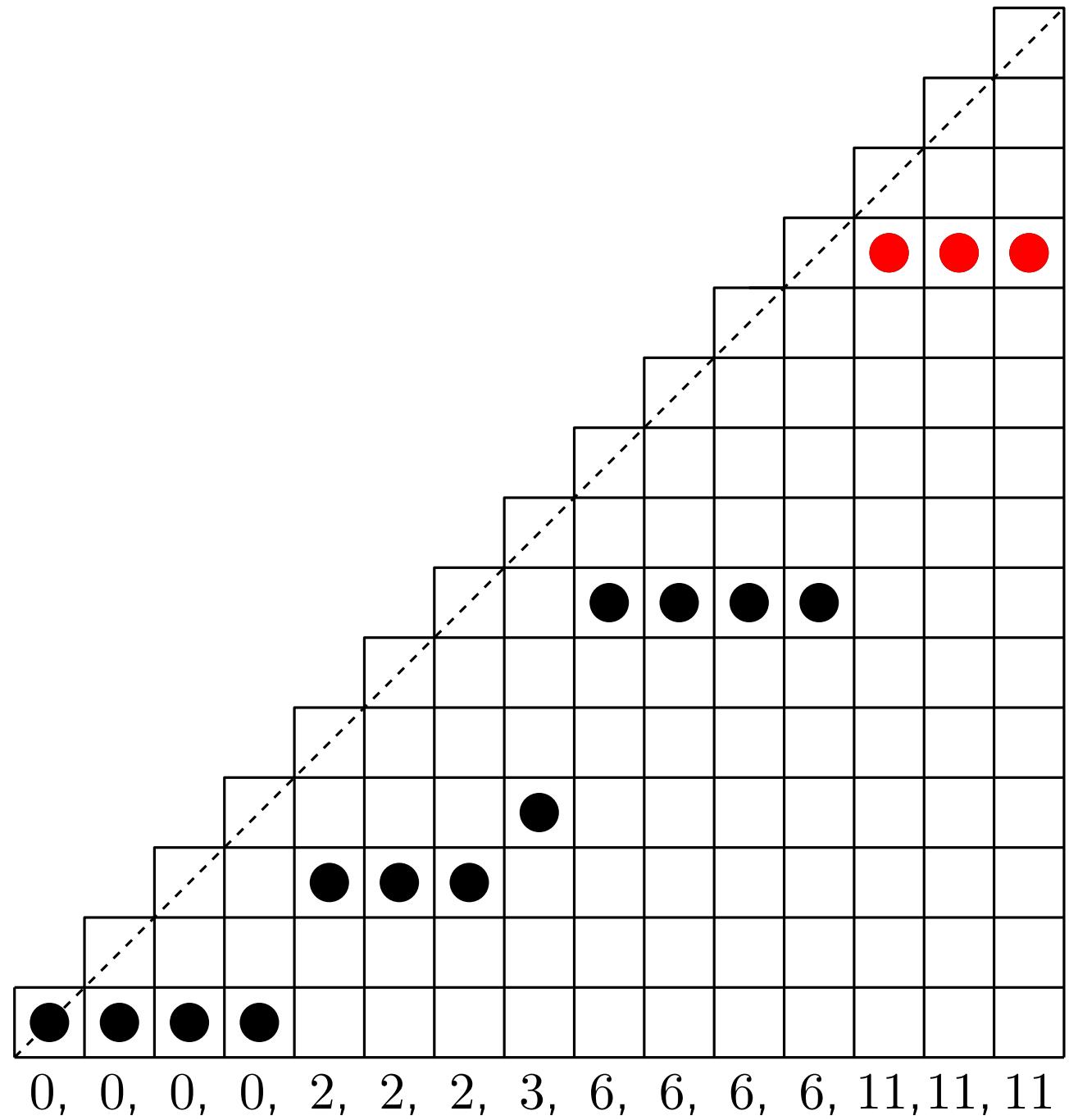
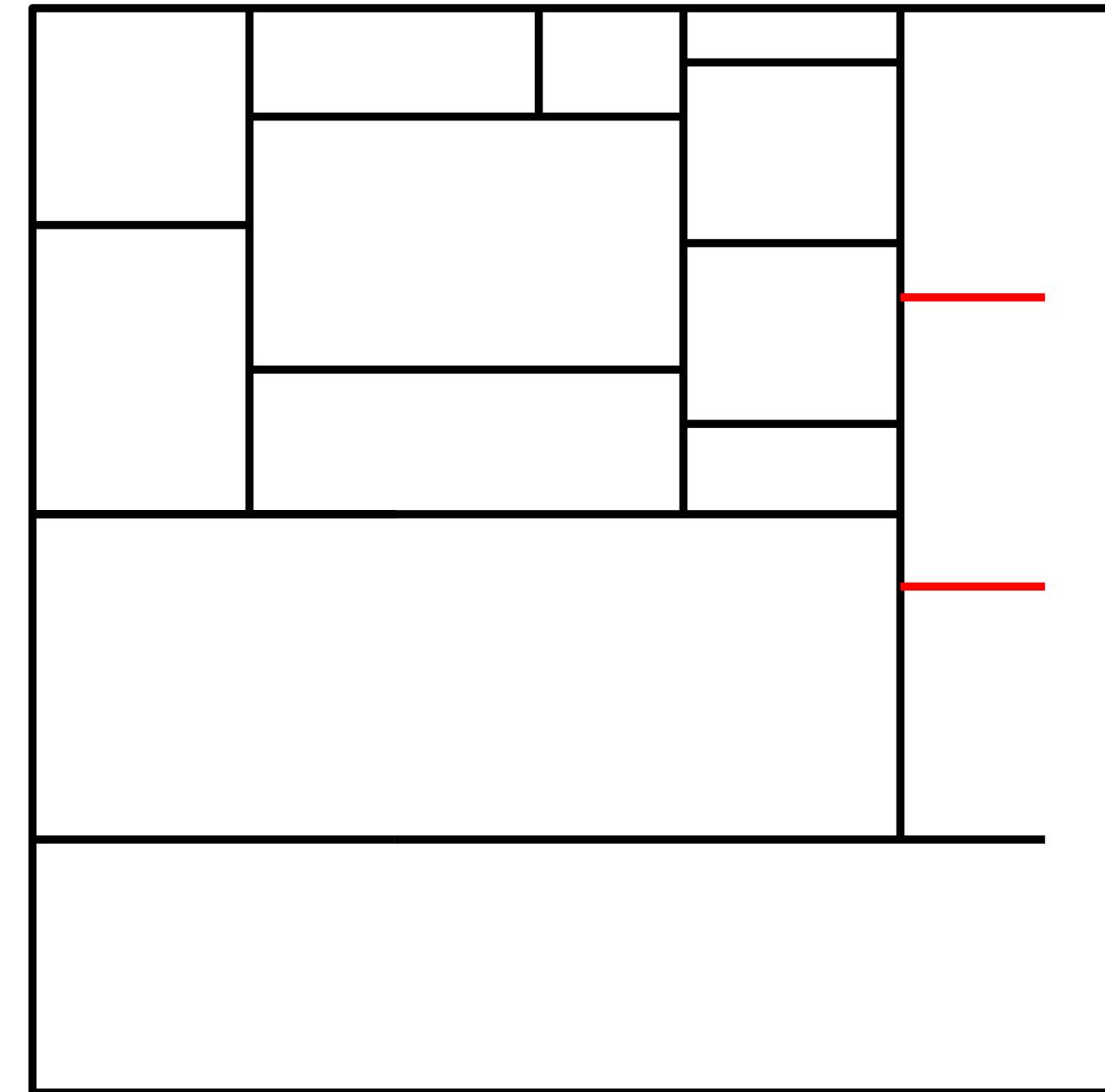
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



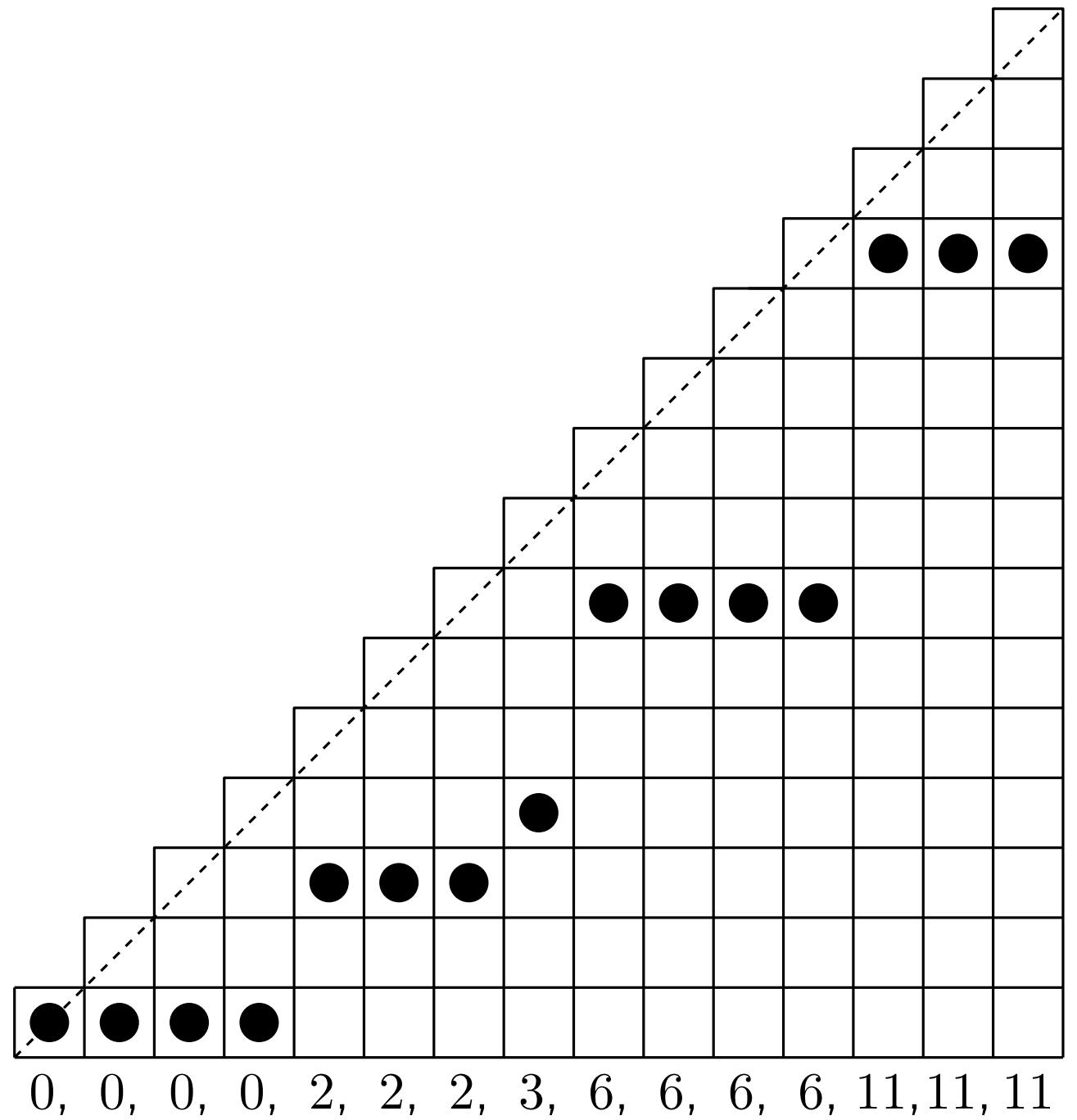
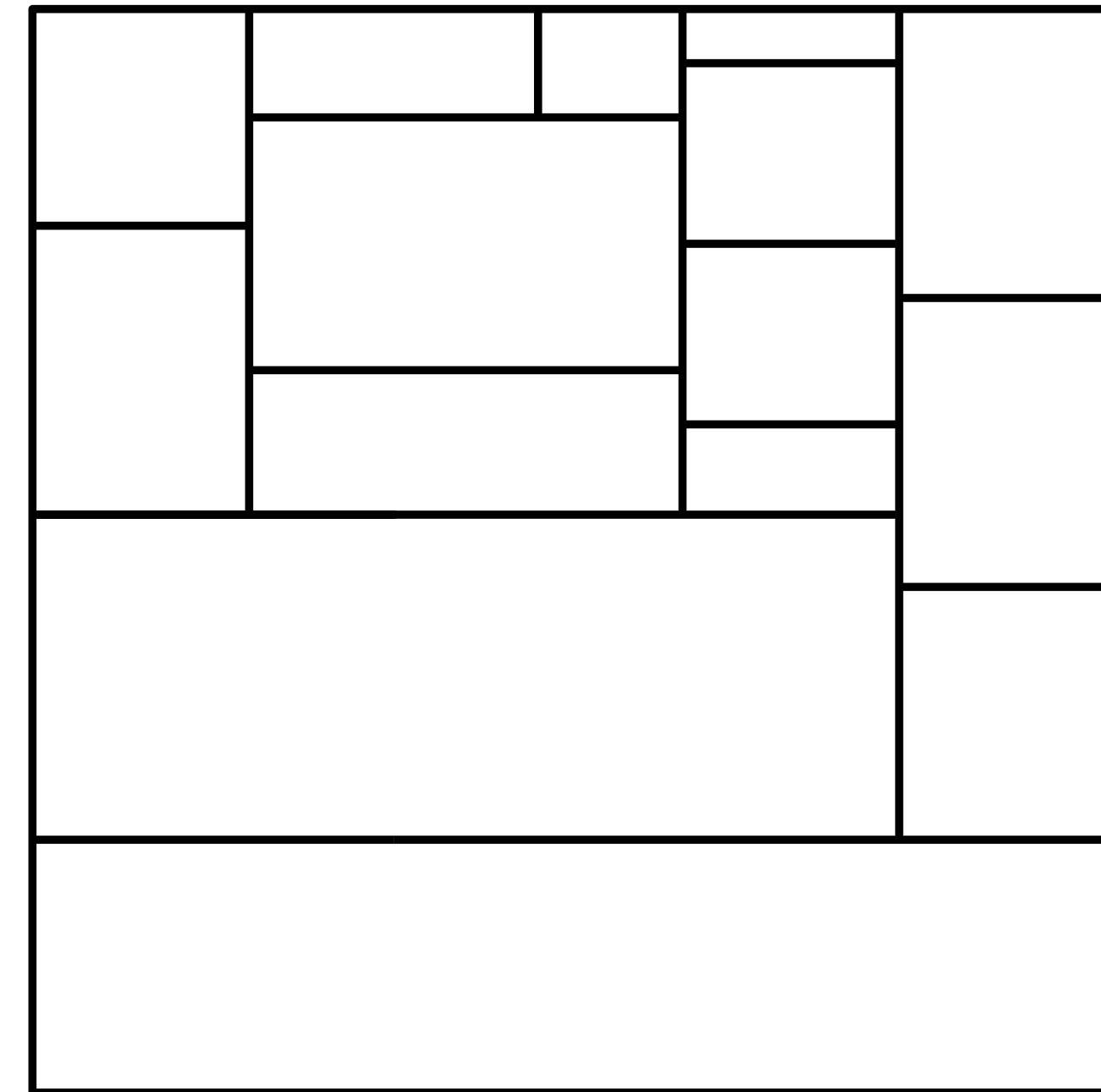
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



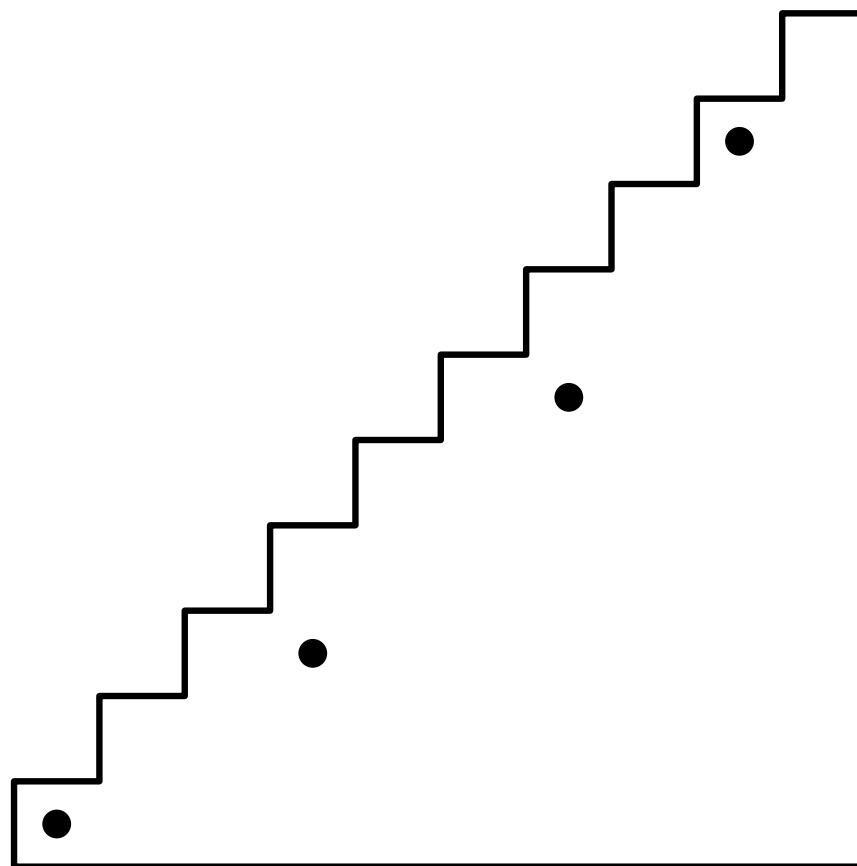
$$|R_n^w(\top)| = C_n \text{ (Williams)}$$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences

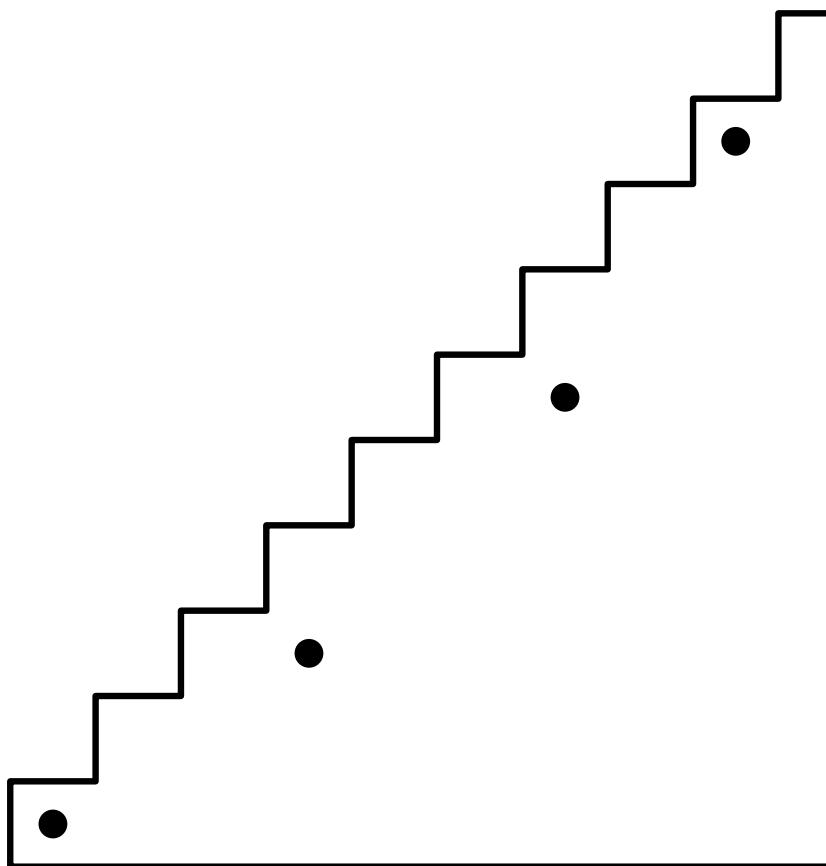


$|R_n^s(\top)| = |I_n(010, 101, 120, 201)|$, OEIS A279555 (Asinowski and P)

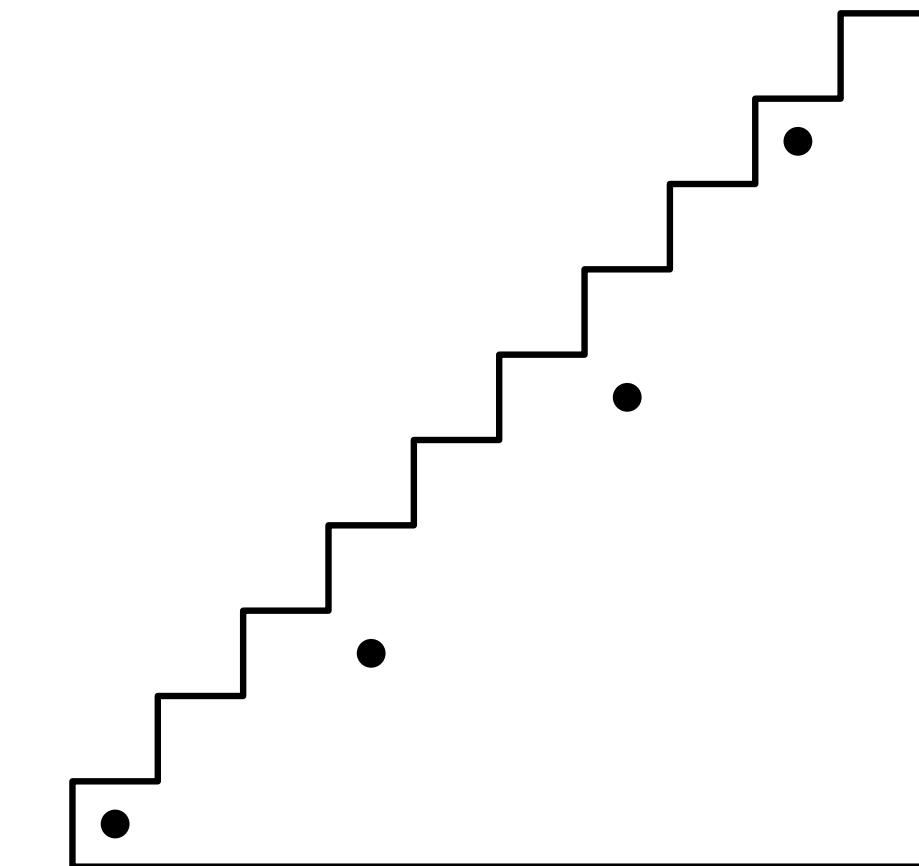
$$I_n(010, 101, 120, 201)$$



$$I_n(010, 110, 120, 210)$$

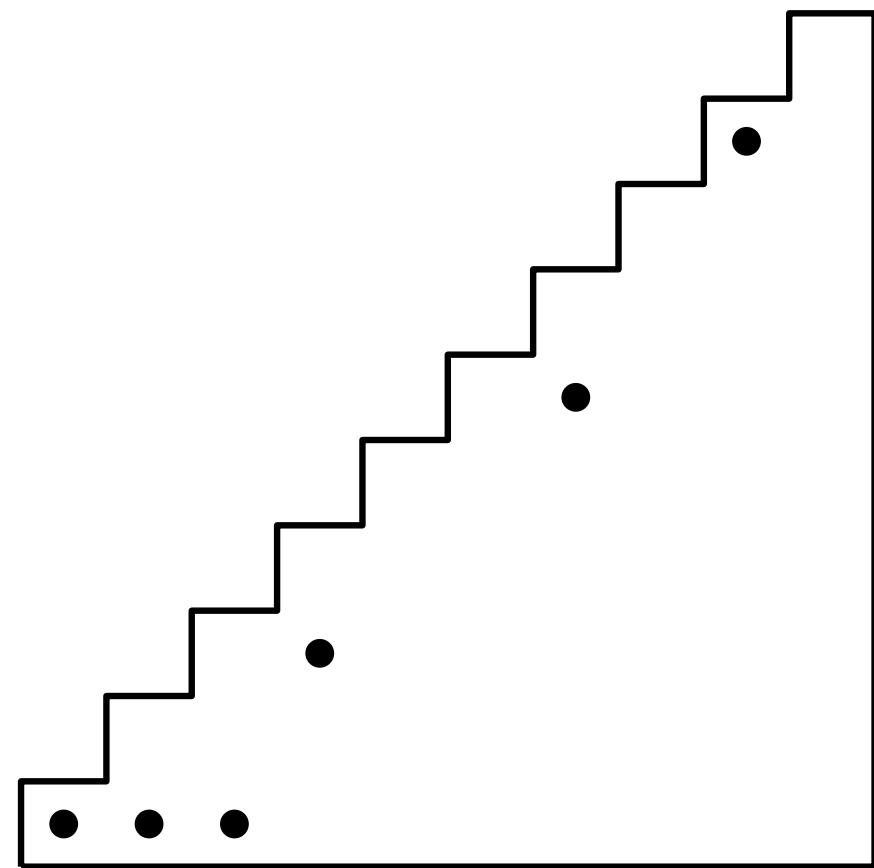


$$I_n(010, 100, 120, 210)$$

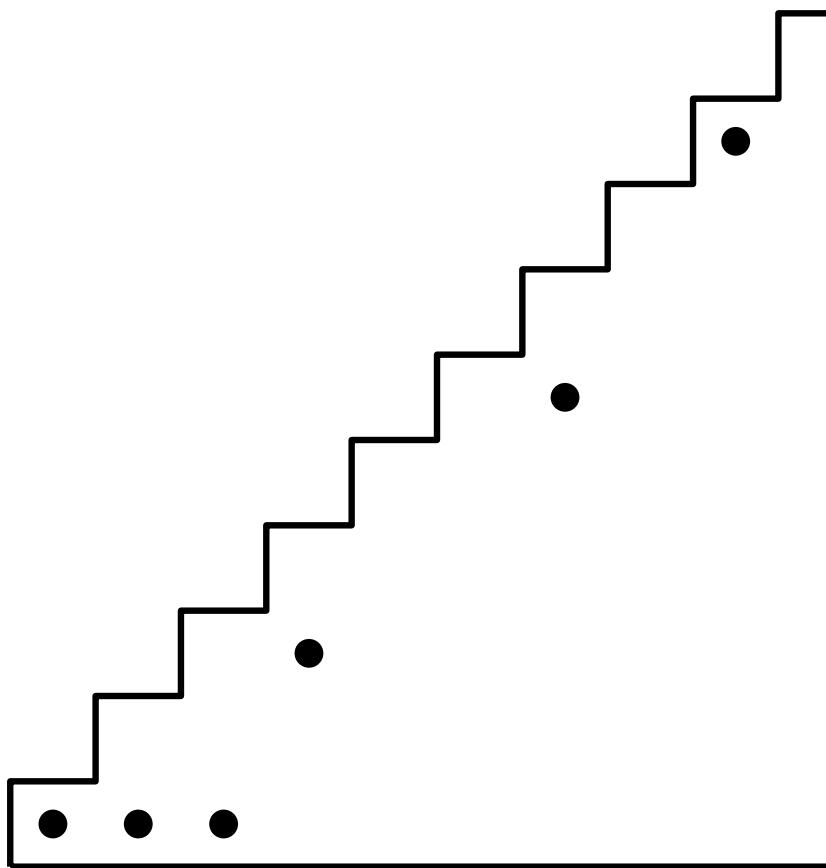


$$|R_n^s(\top)| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

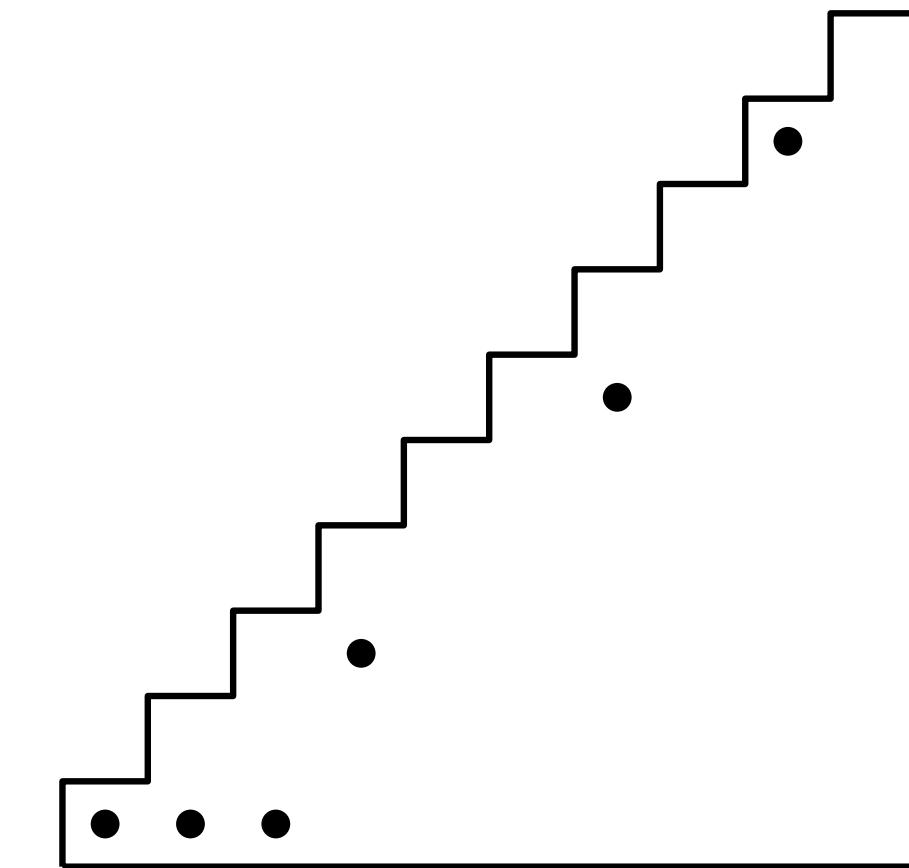
$$I_n(010, 101, 120, 201)$$



$$I_n(010, 110, 120, 210)$$

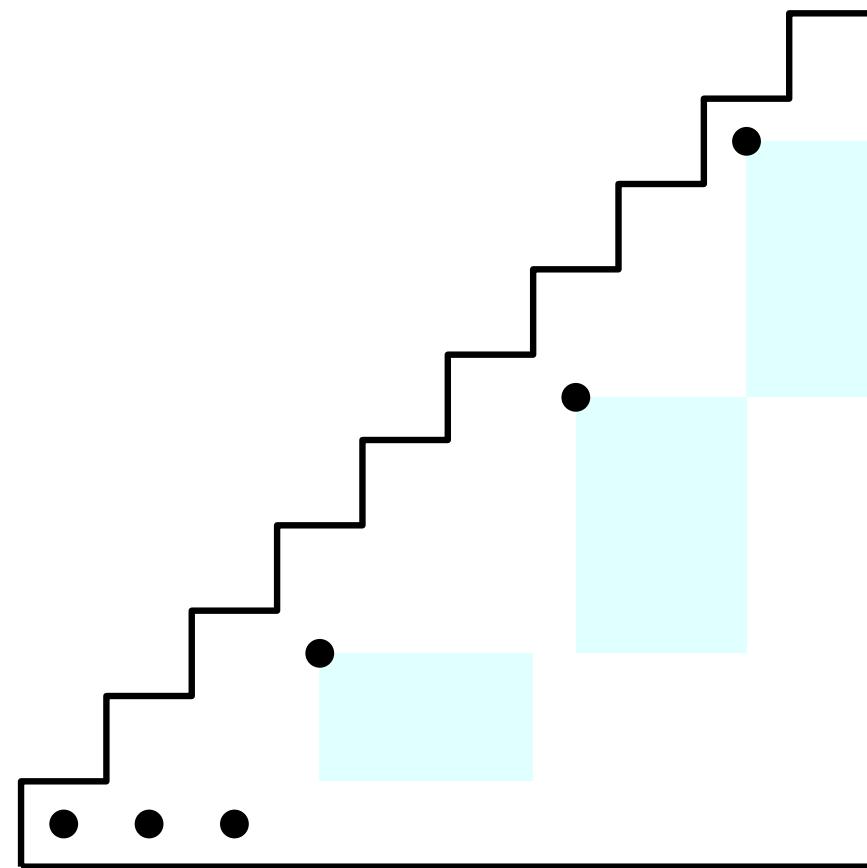


$$I_n(010, 100, 120, 210)$$

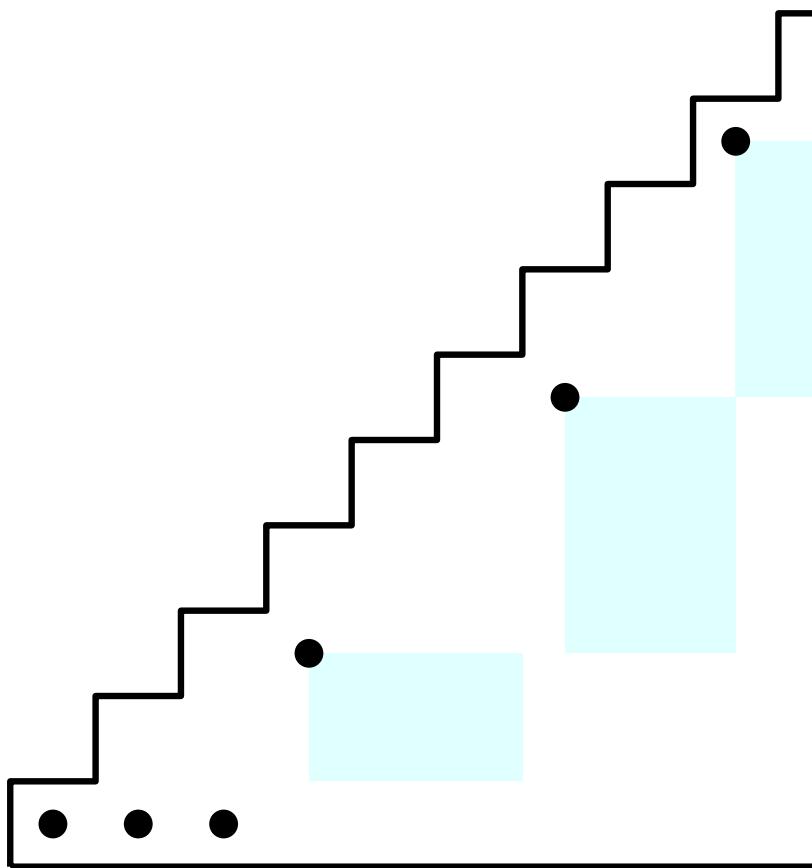


$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

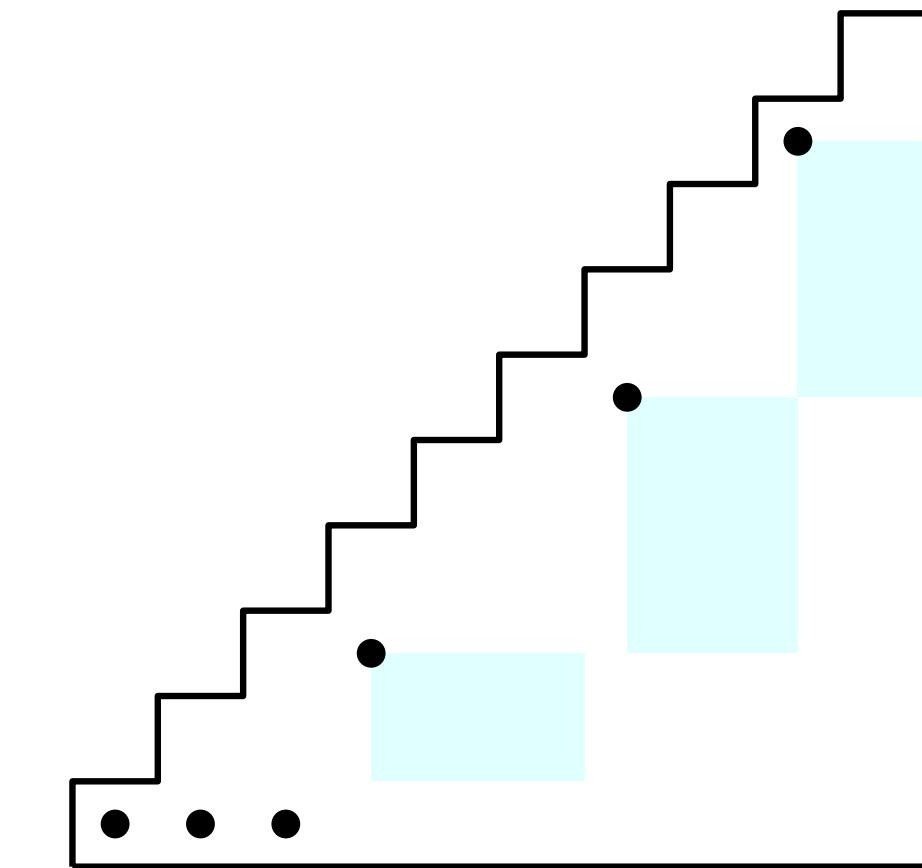
$$I_n(010, 101, 120, 201)$$



$$I_n(010, 110, 120, 210)$$

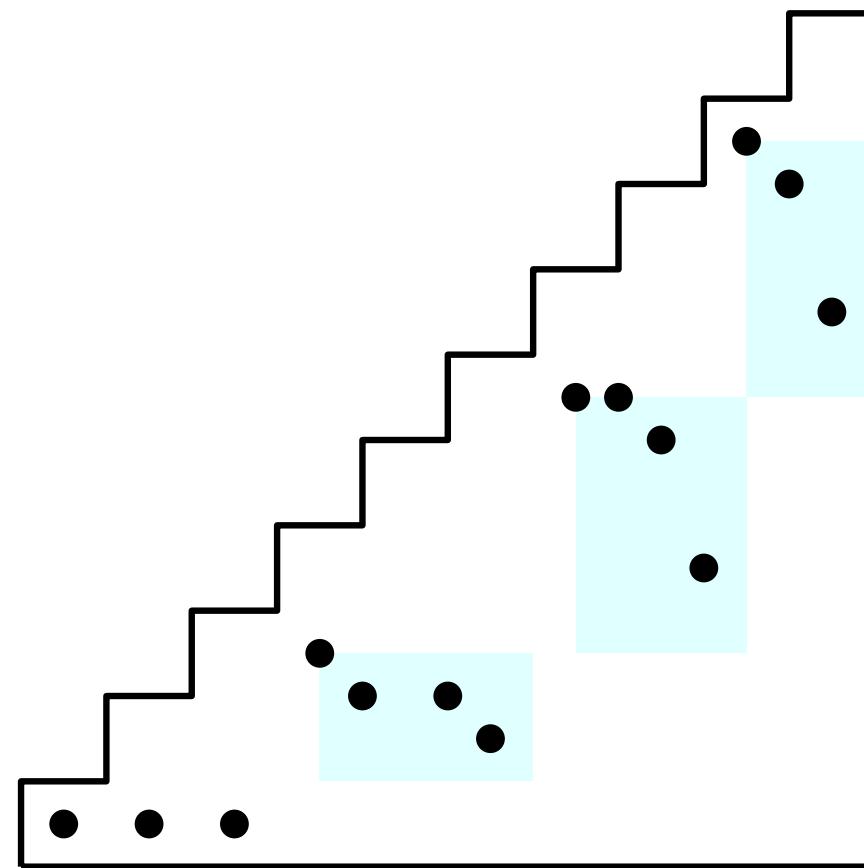


$$I_n(010, 100, 120, 210)$$

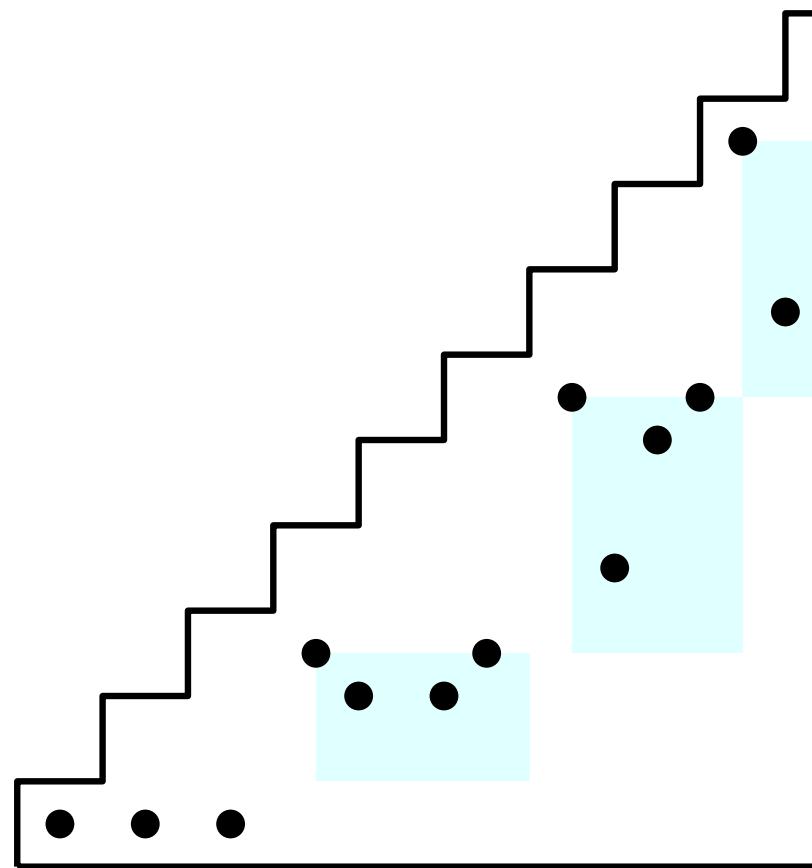


$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

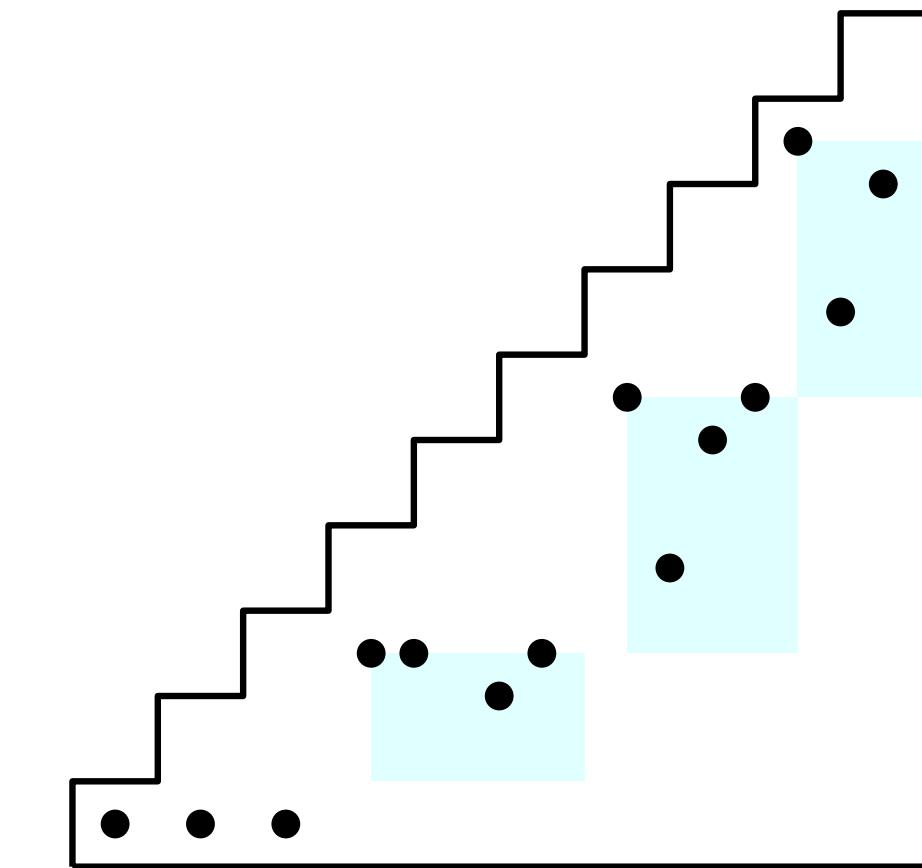
$$I_n(010, 101, 120, 201)$$



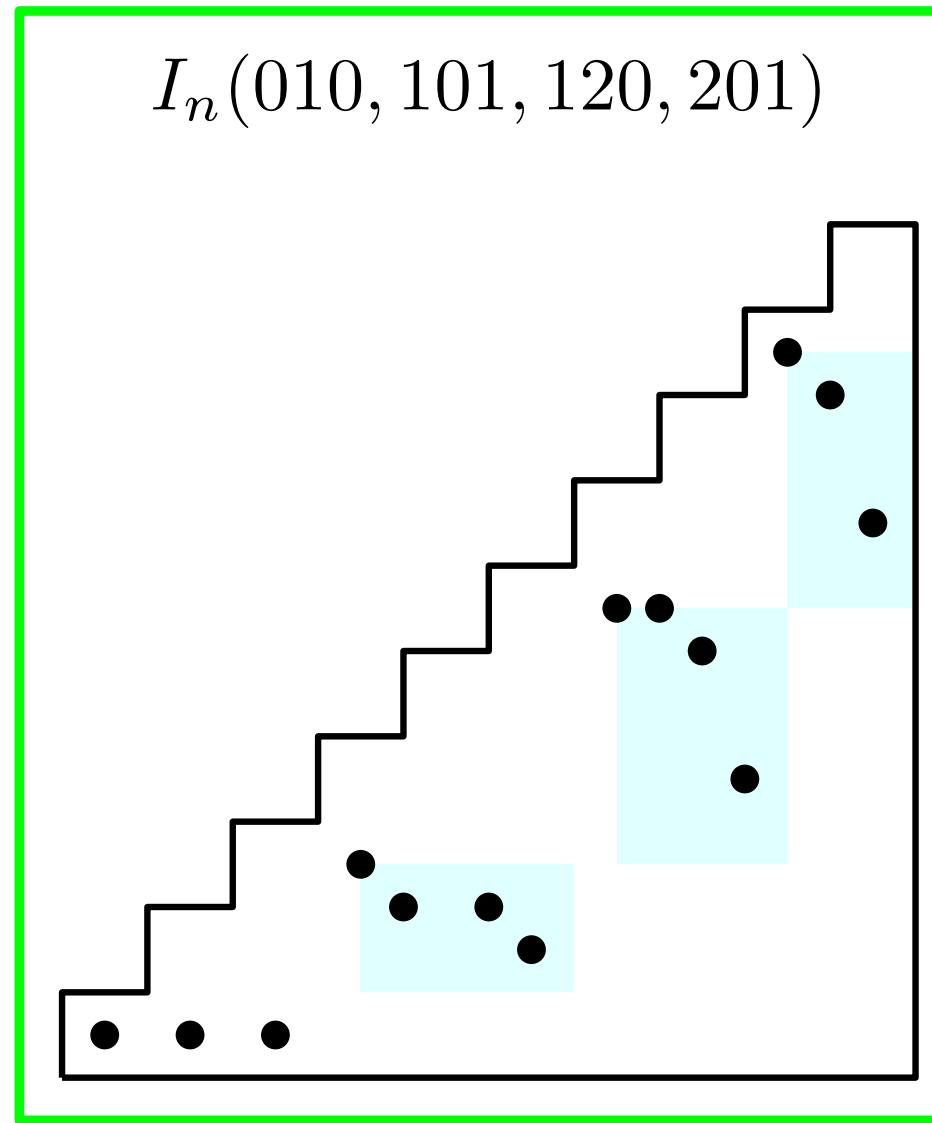
$$I_n(010, 110, 120, 210)$$



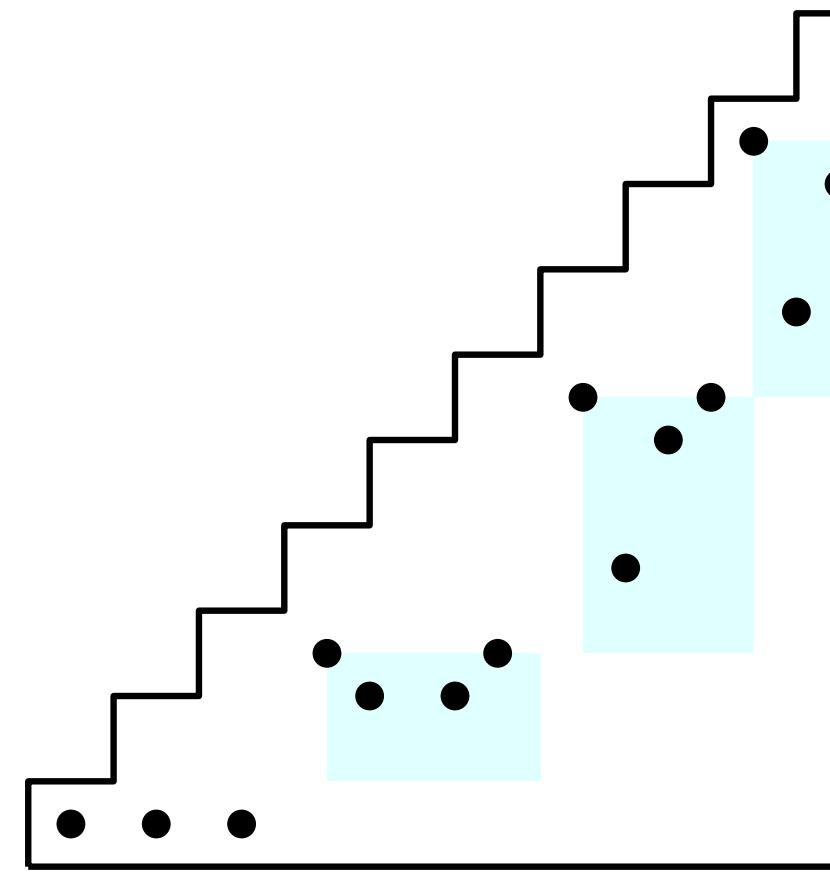
$$I_n(010, 100, 120, 210)$$



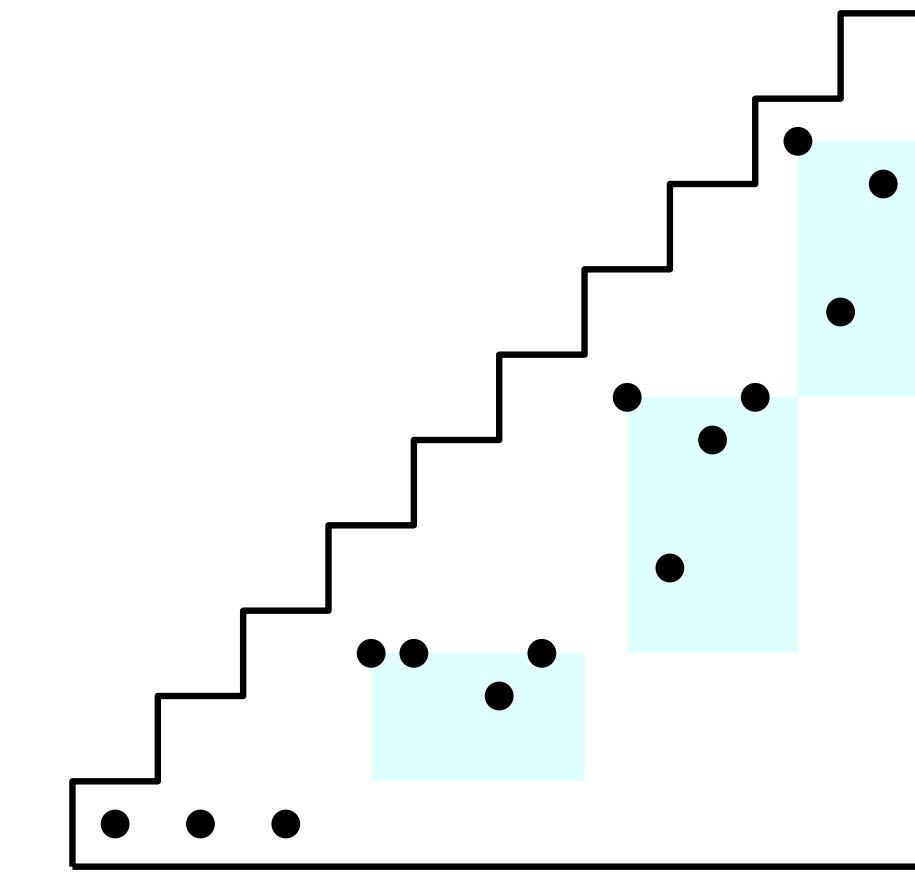
$$|R_n^s(\top)| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$



$$I_n(010, 110, 120, 210)$$

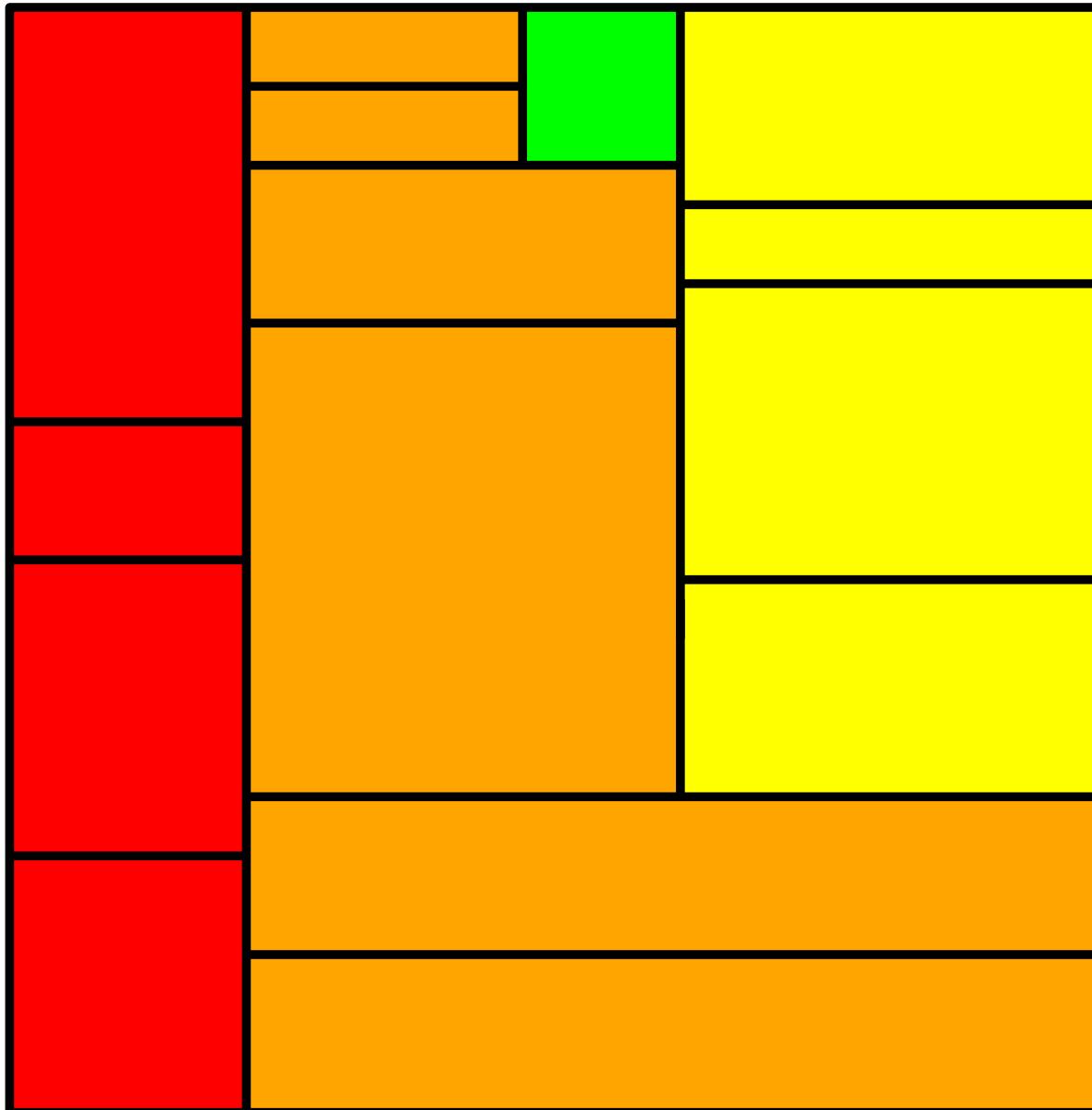
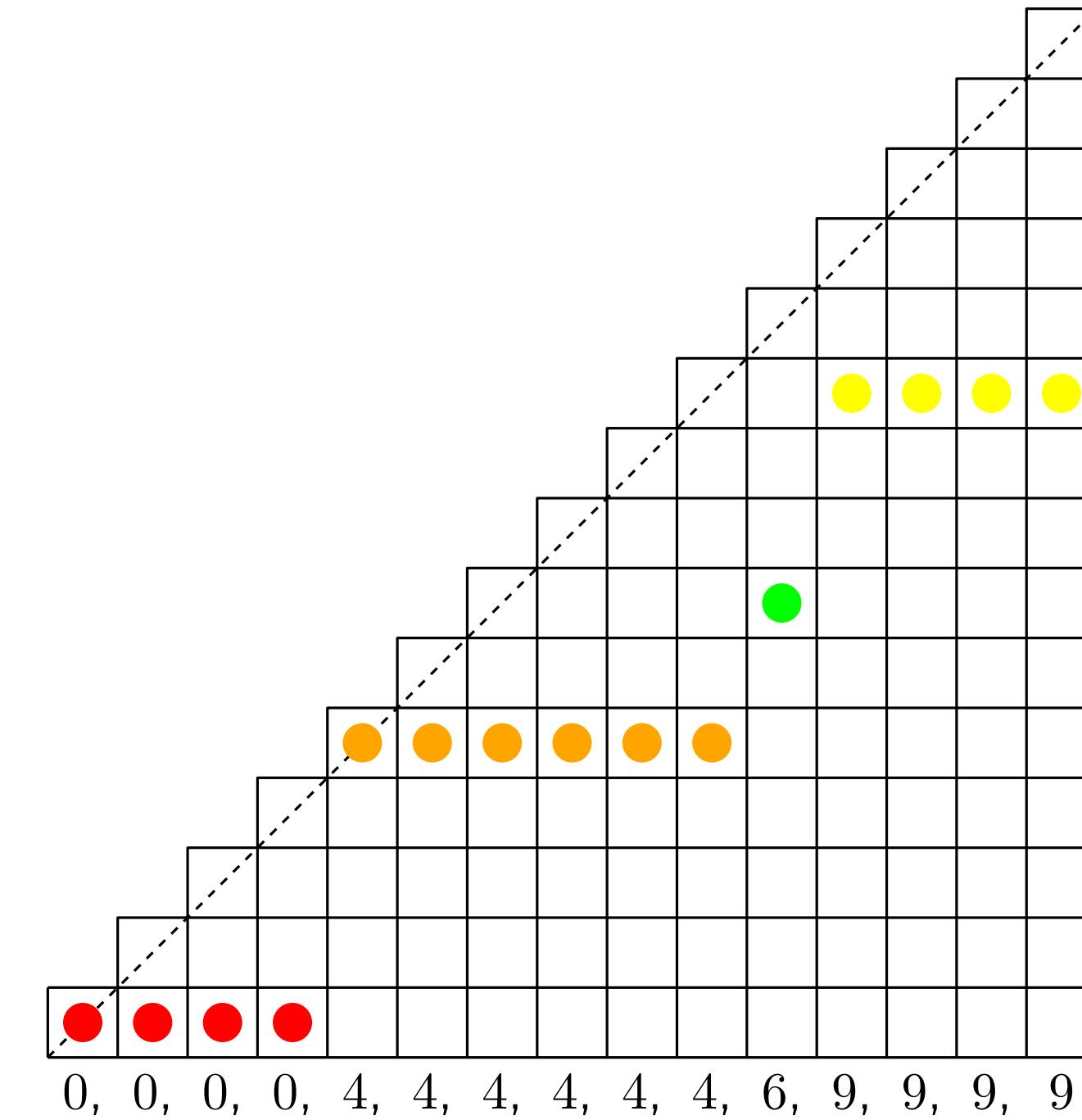


$$I_n(010, 100, 120, 210)$$



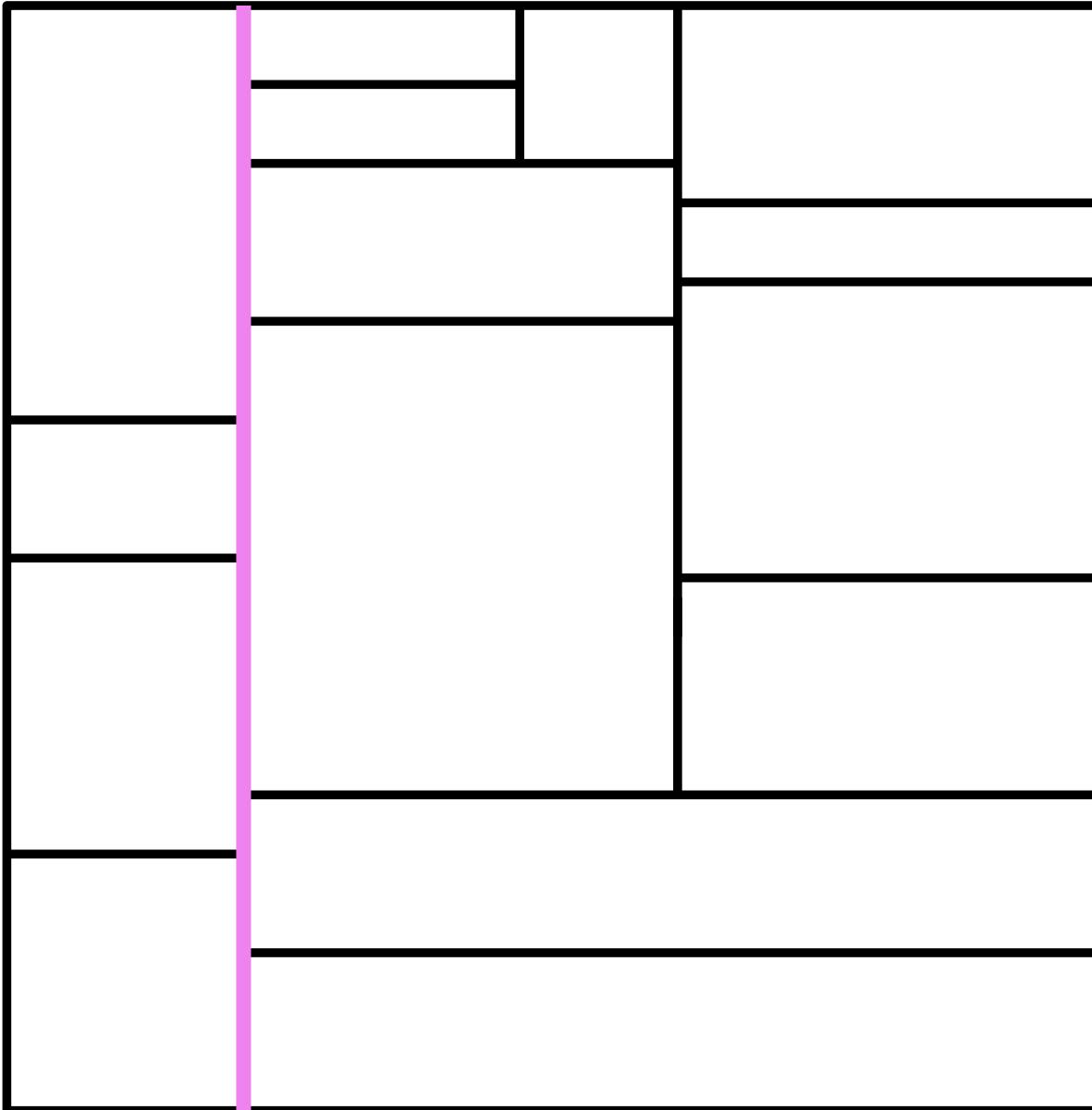
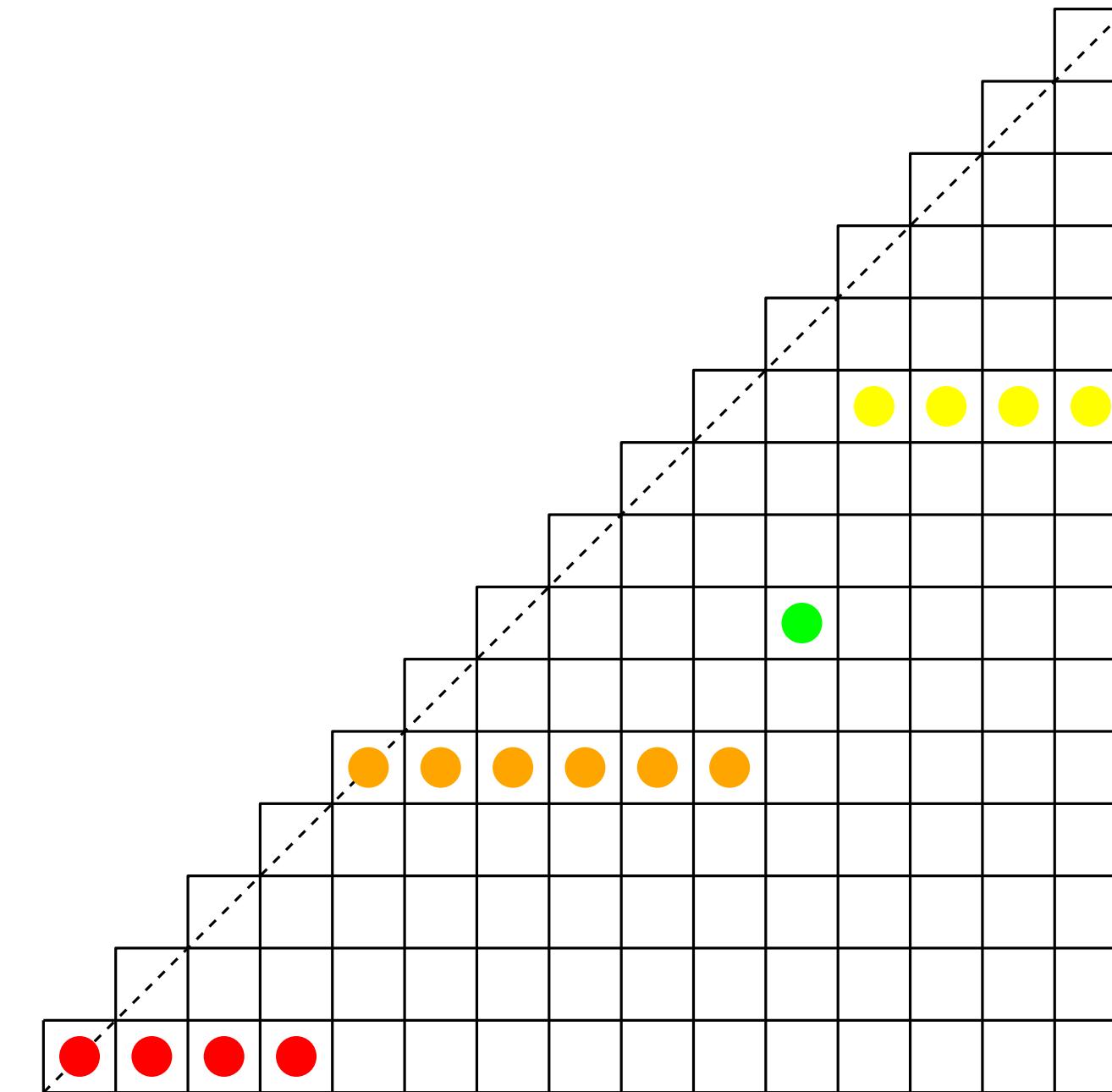
$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

Proof: Bijection to inversion sequences



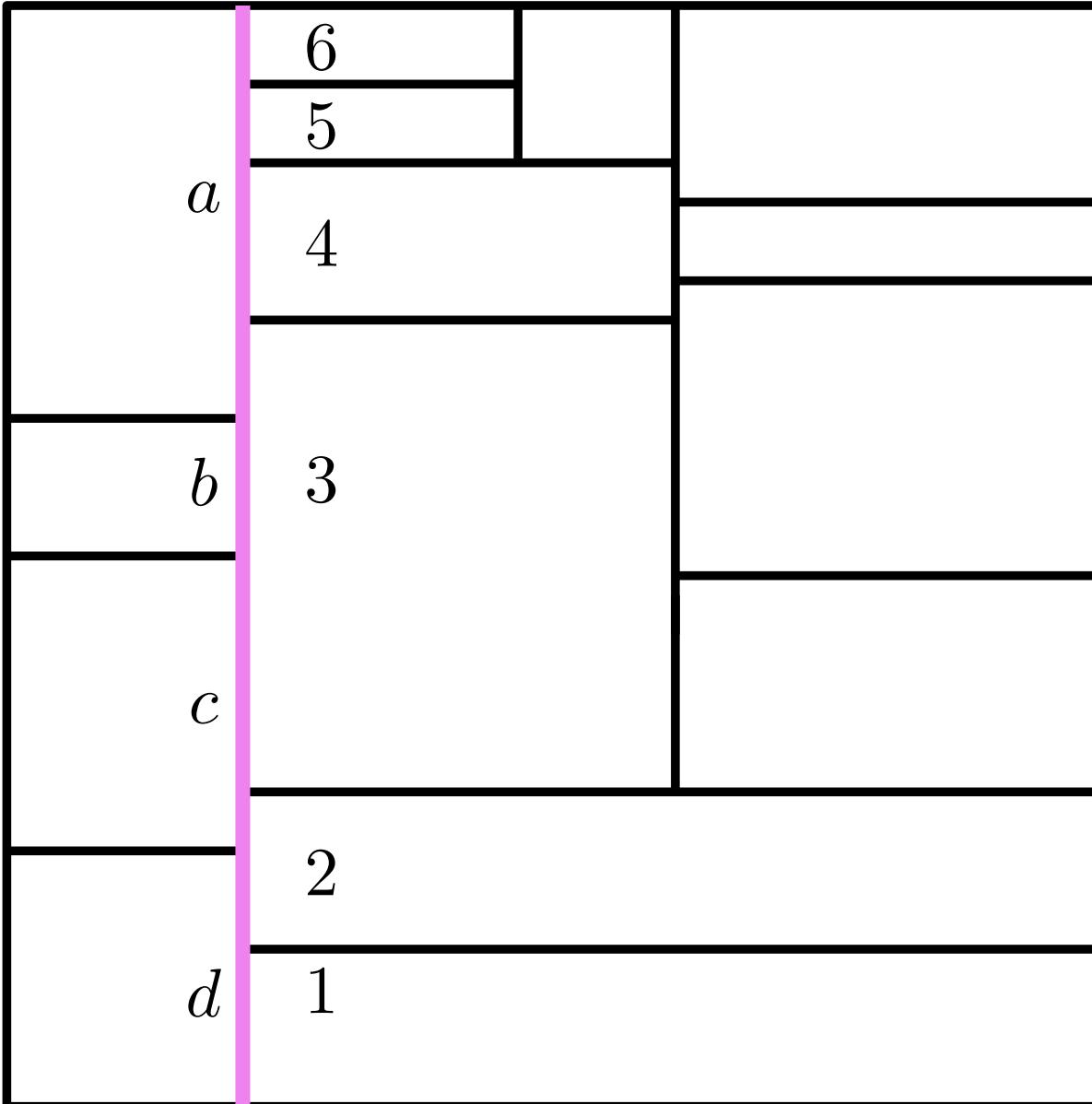
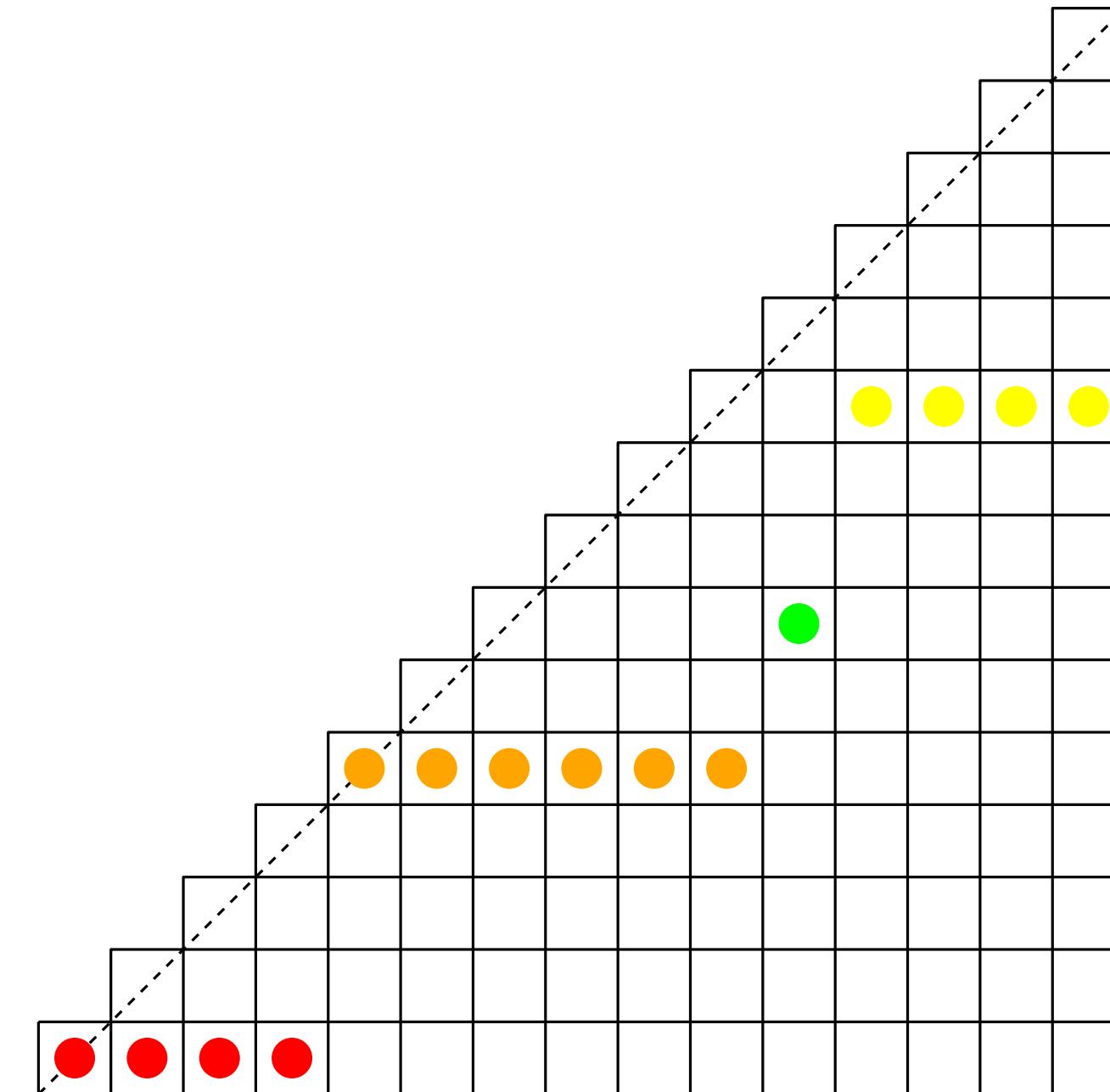
$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

Proof: Bijection to inversion sequences



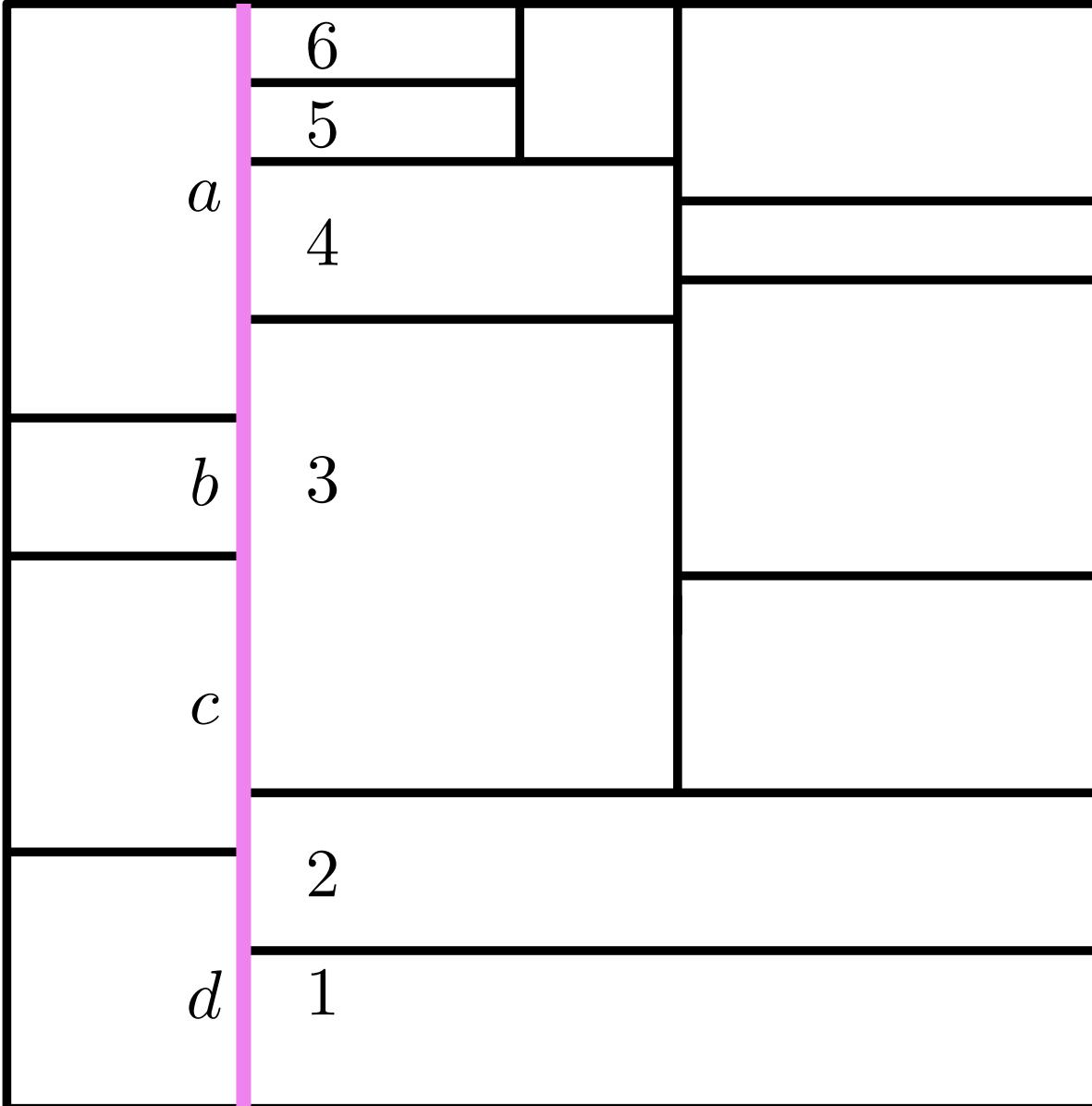
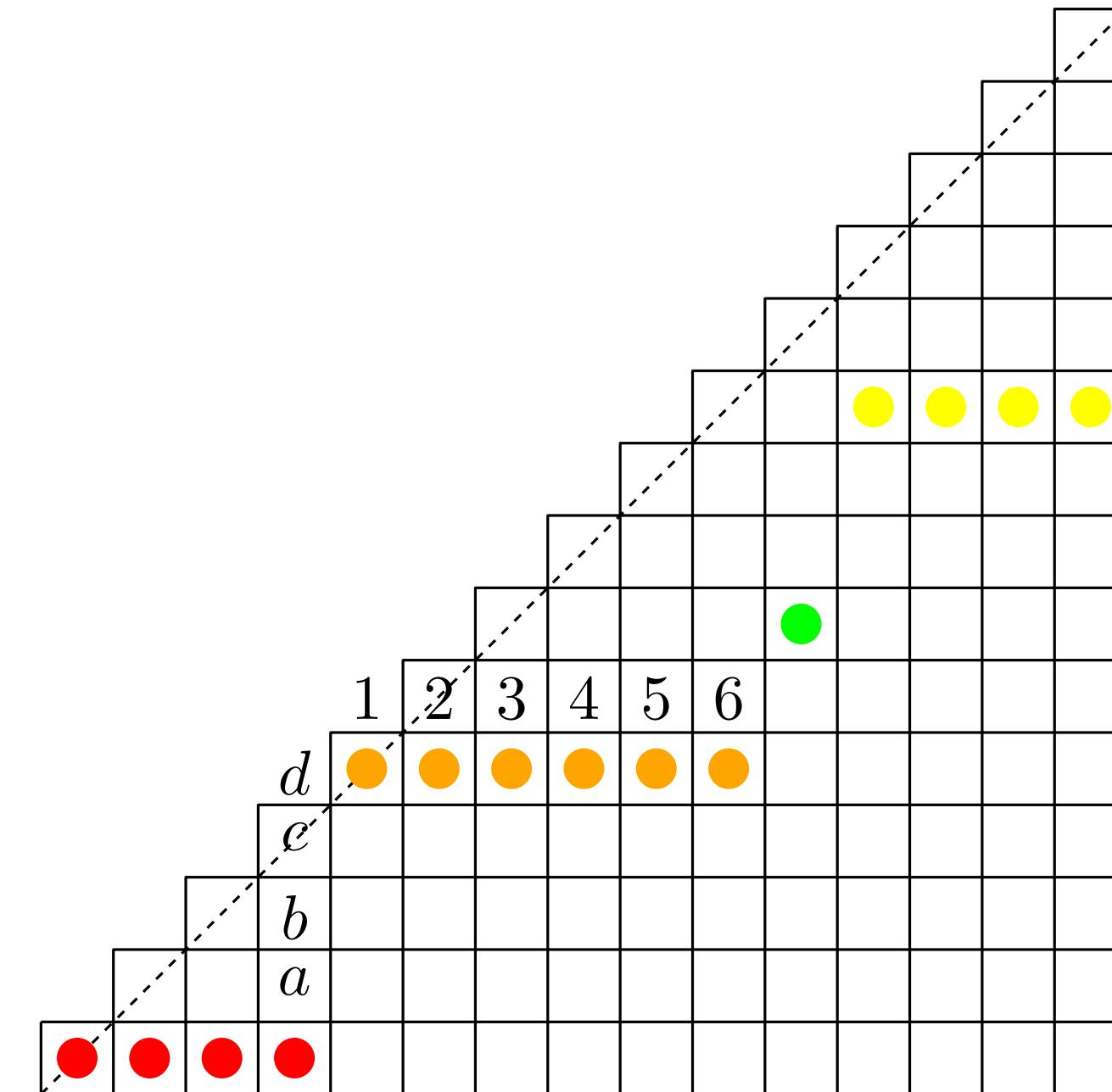
$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

Proof: Bijection to inversion sequences



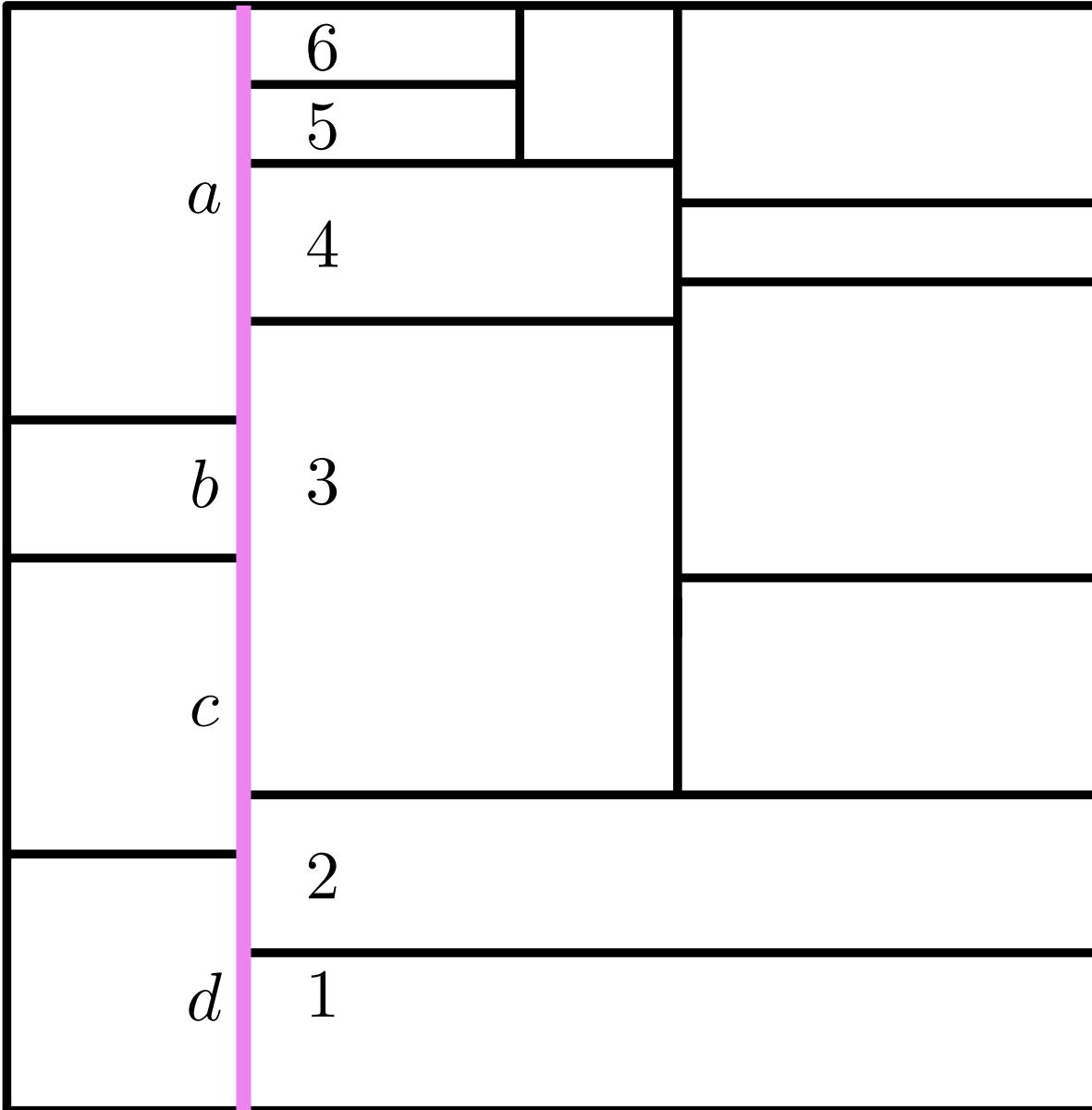
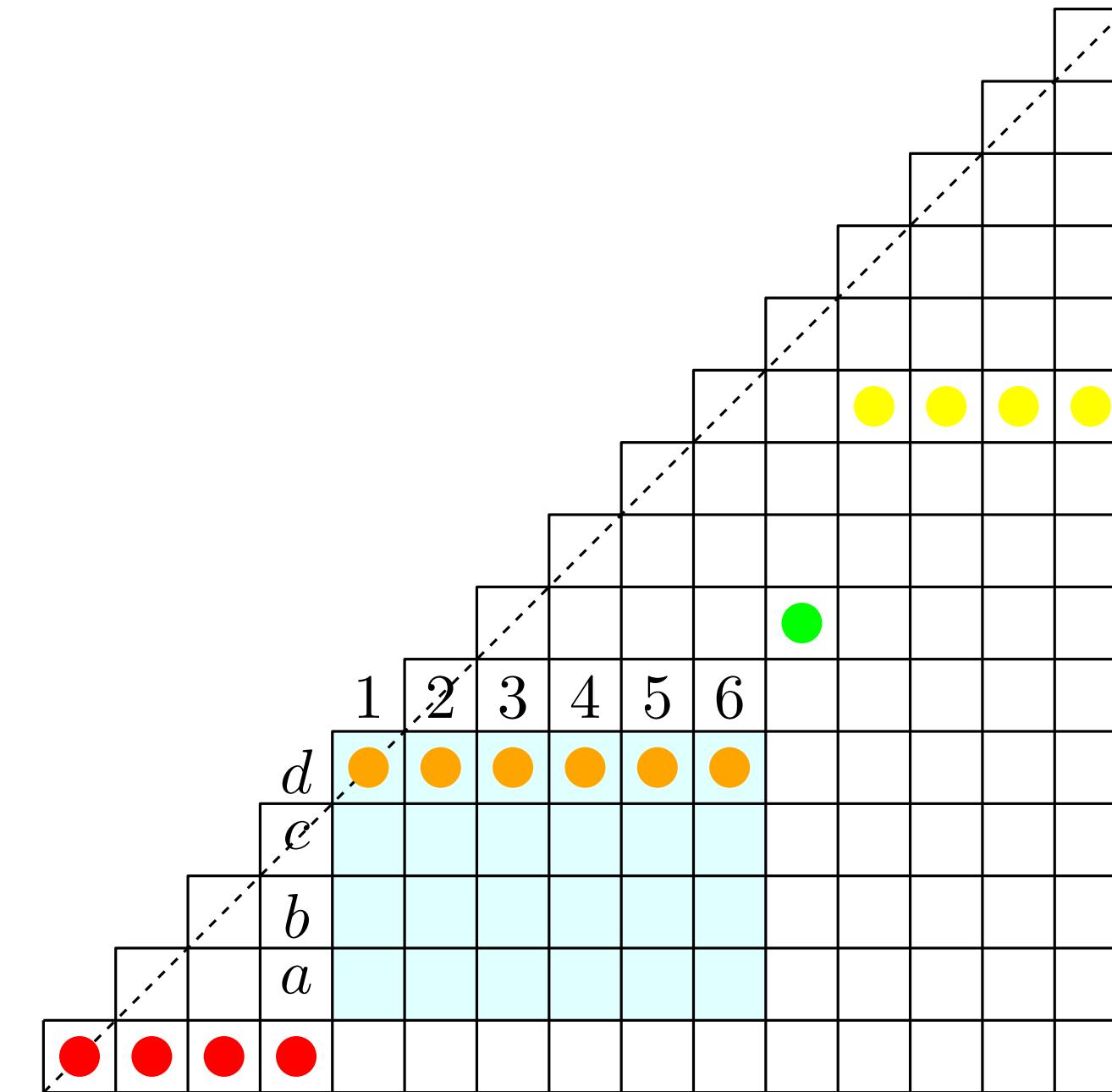
$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

Proof: Bijection to inversion sequences



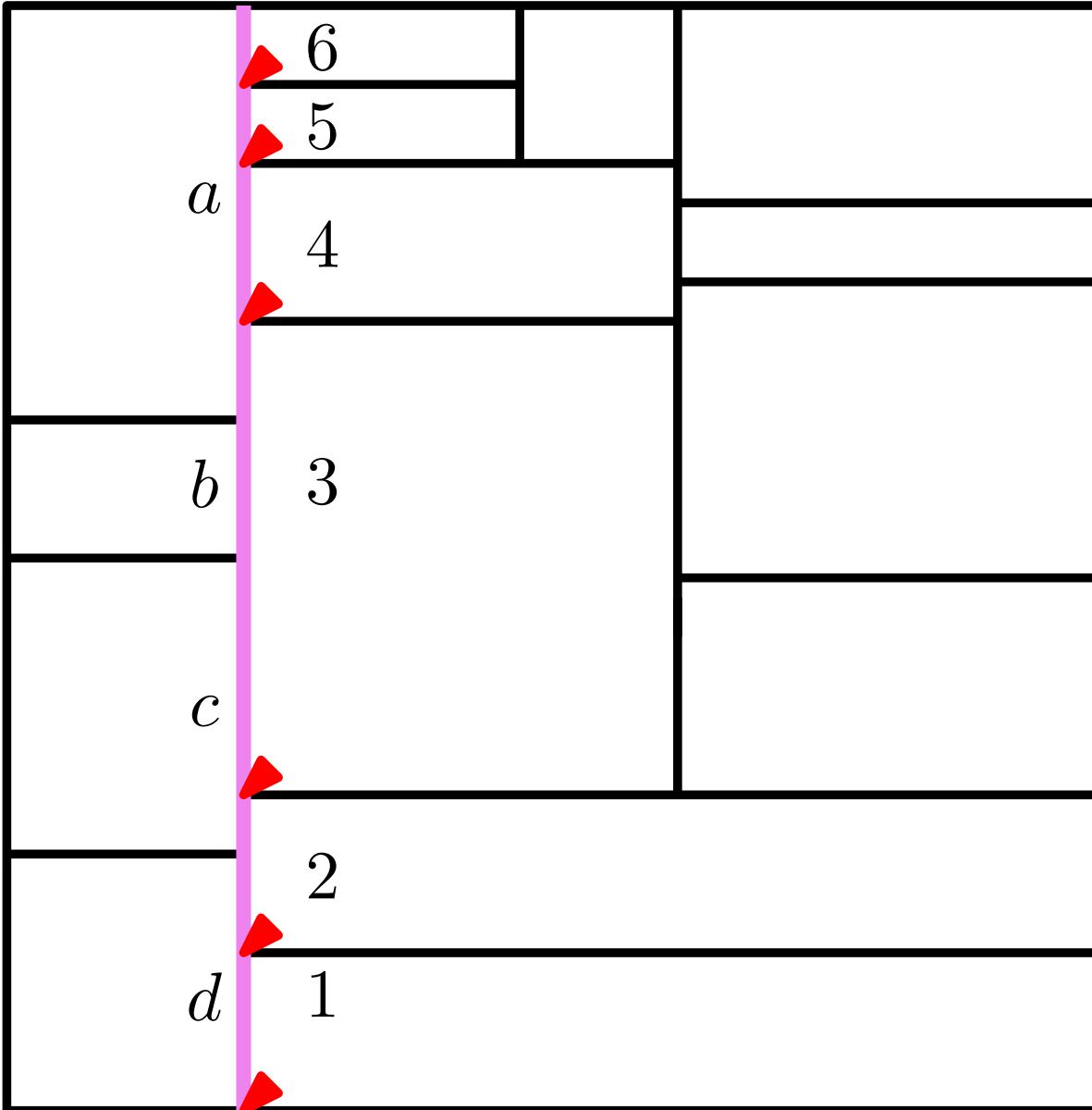
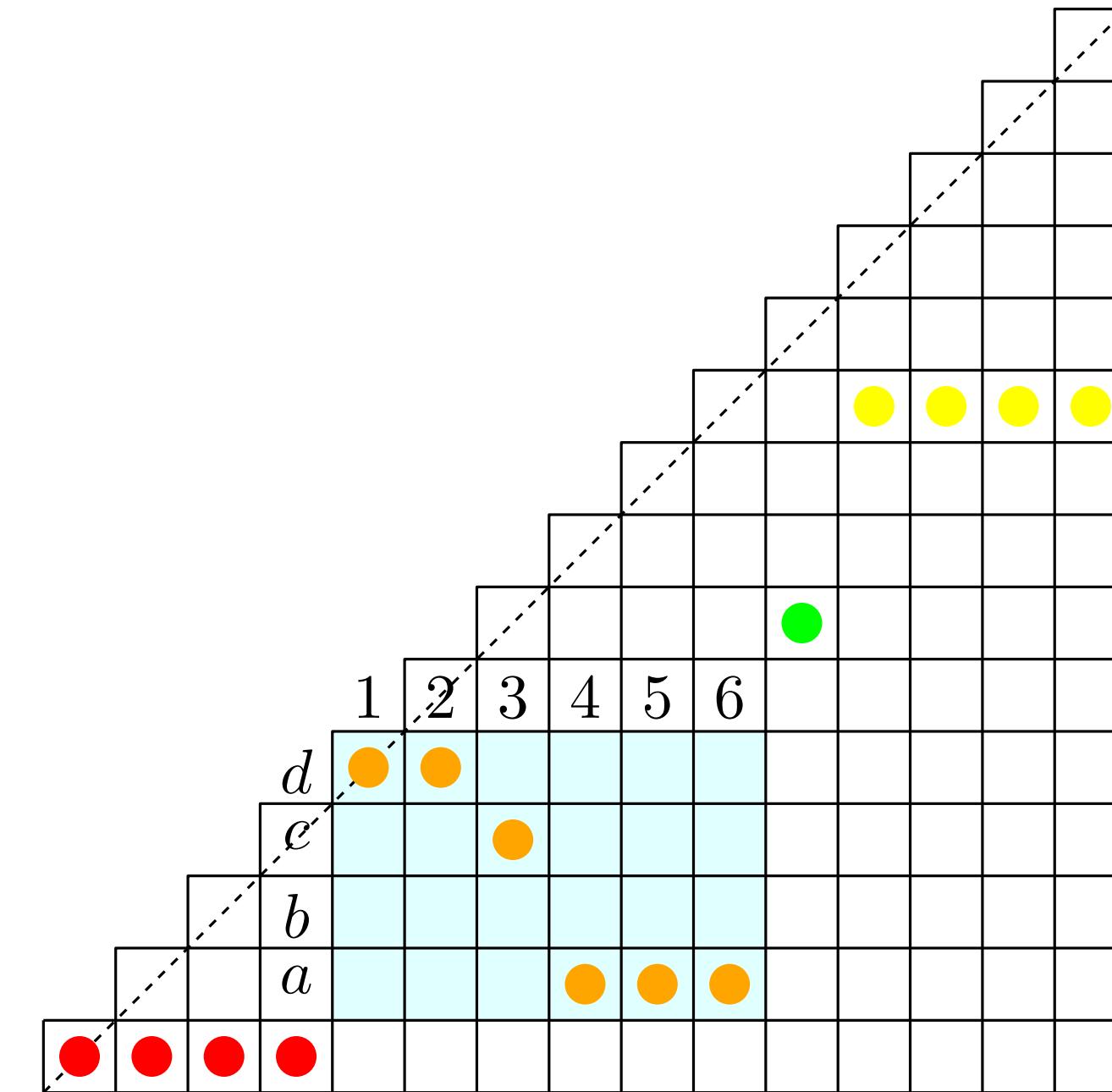
$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

Proof: Bijection to inversion sequences



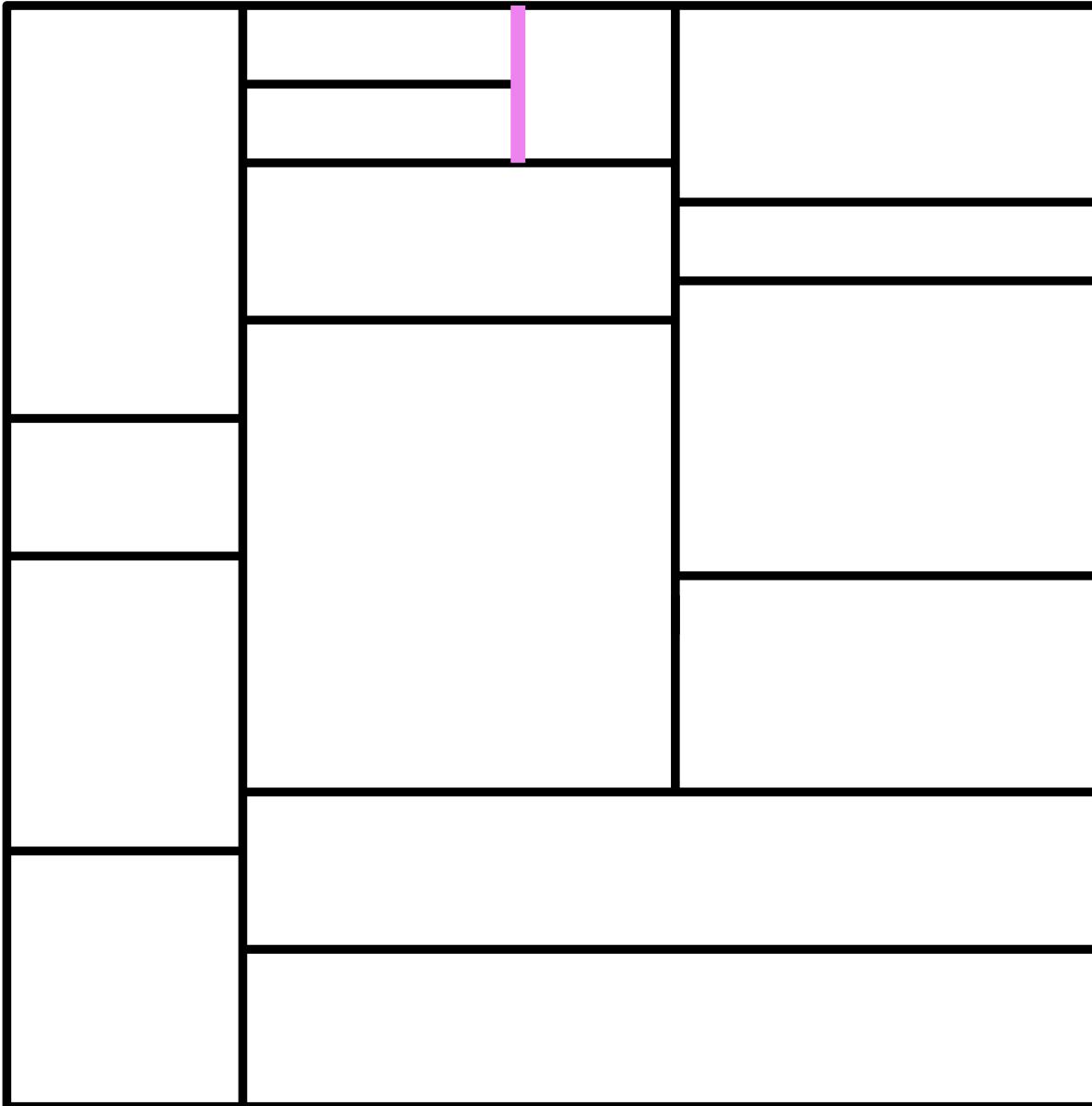
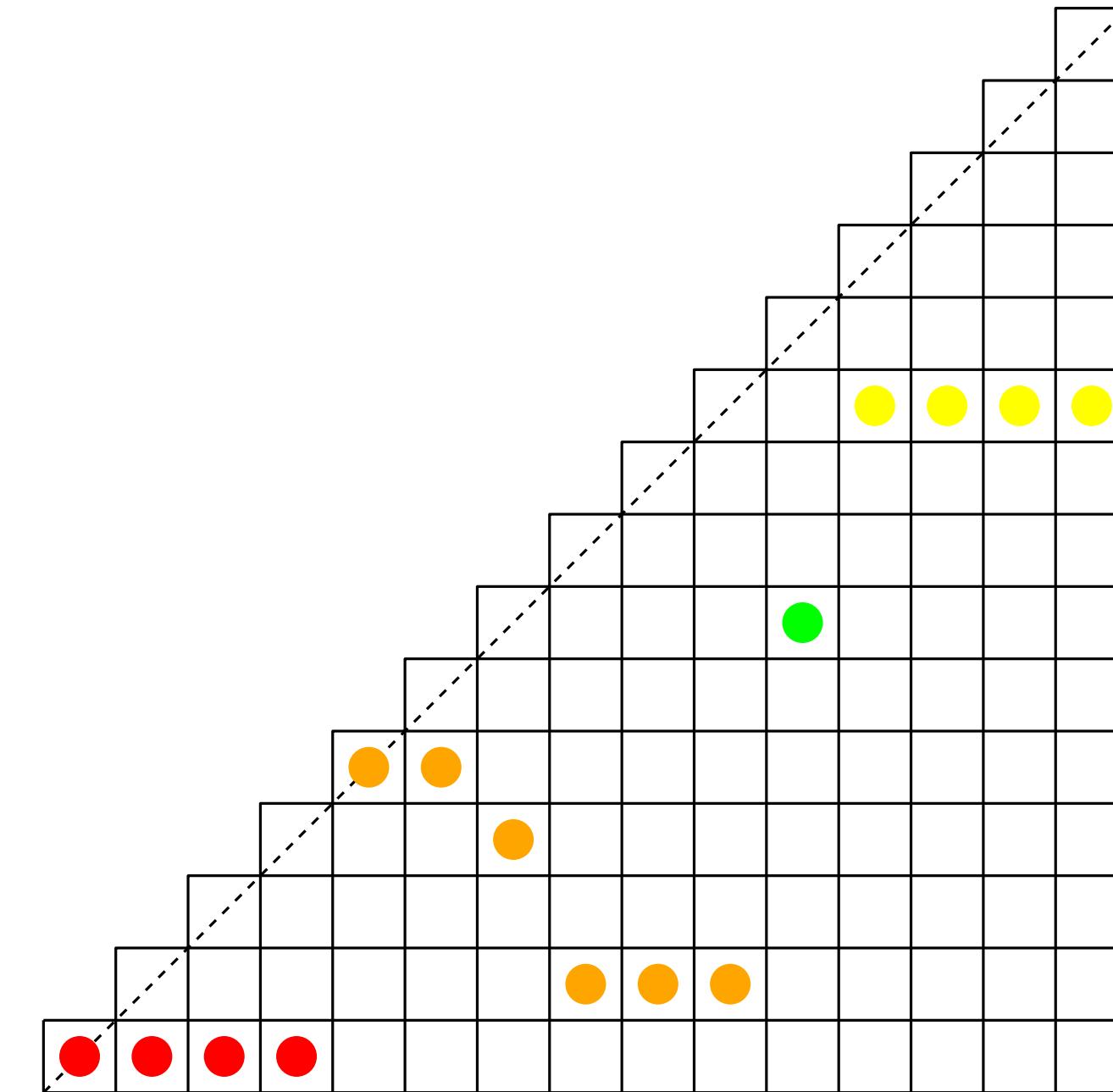
$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

Proof: Bijection to inversion sequences



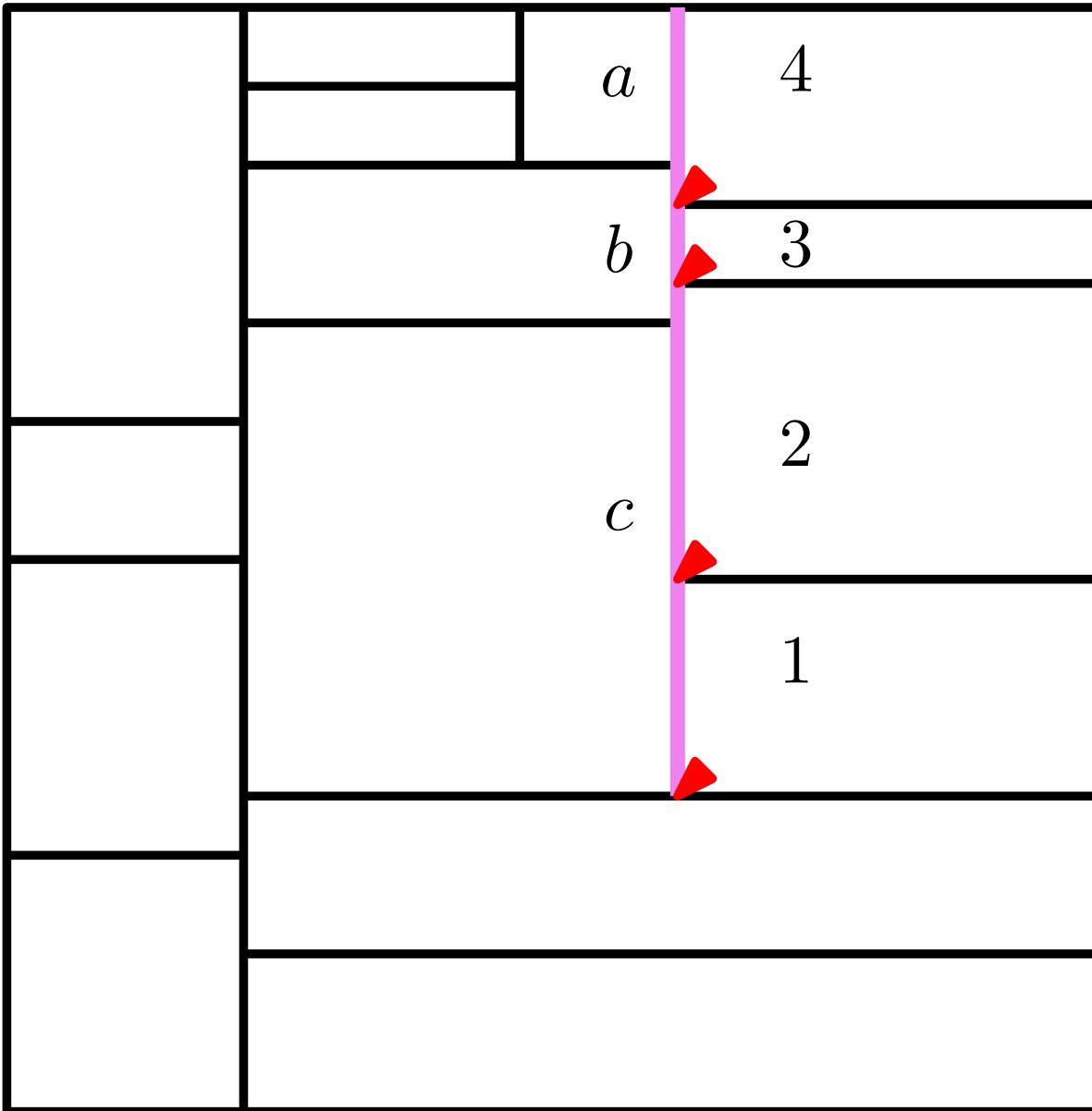
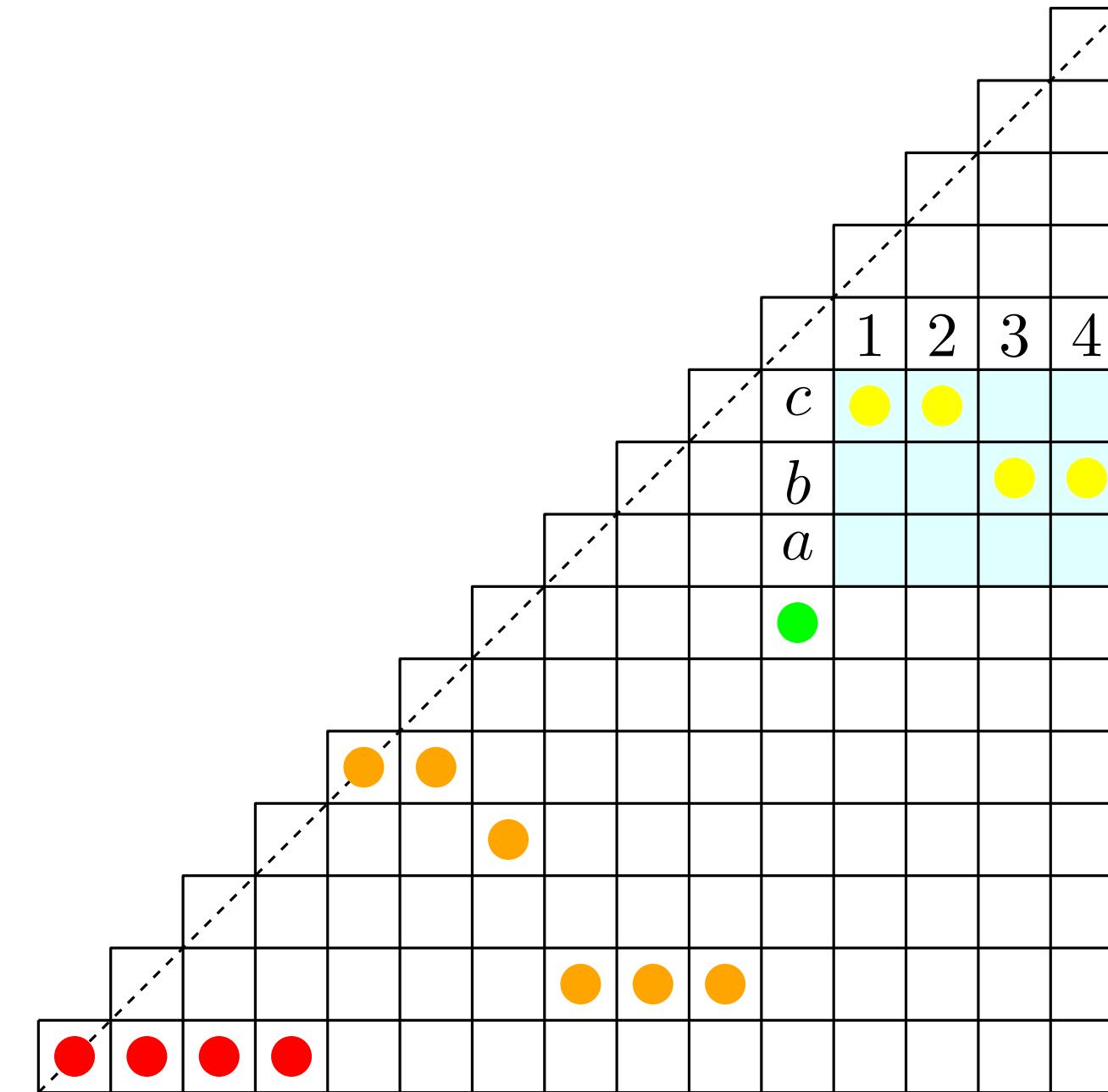
$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

Proof: Bijection to inversion sequences



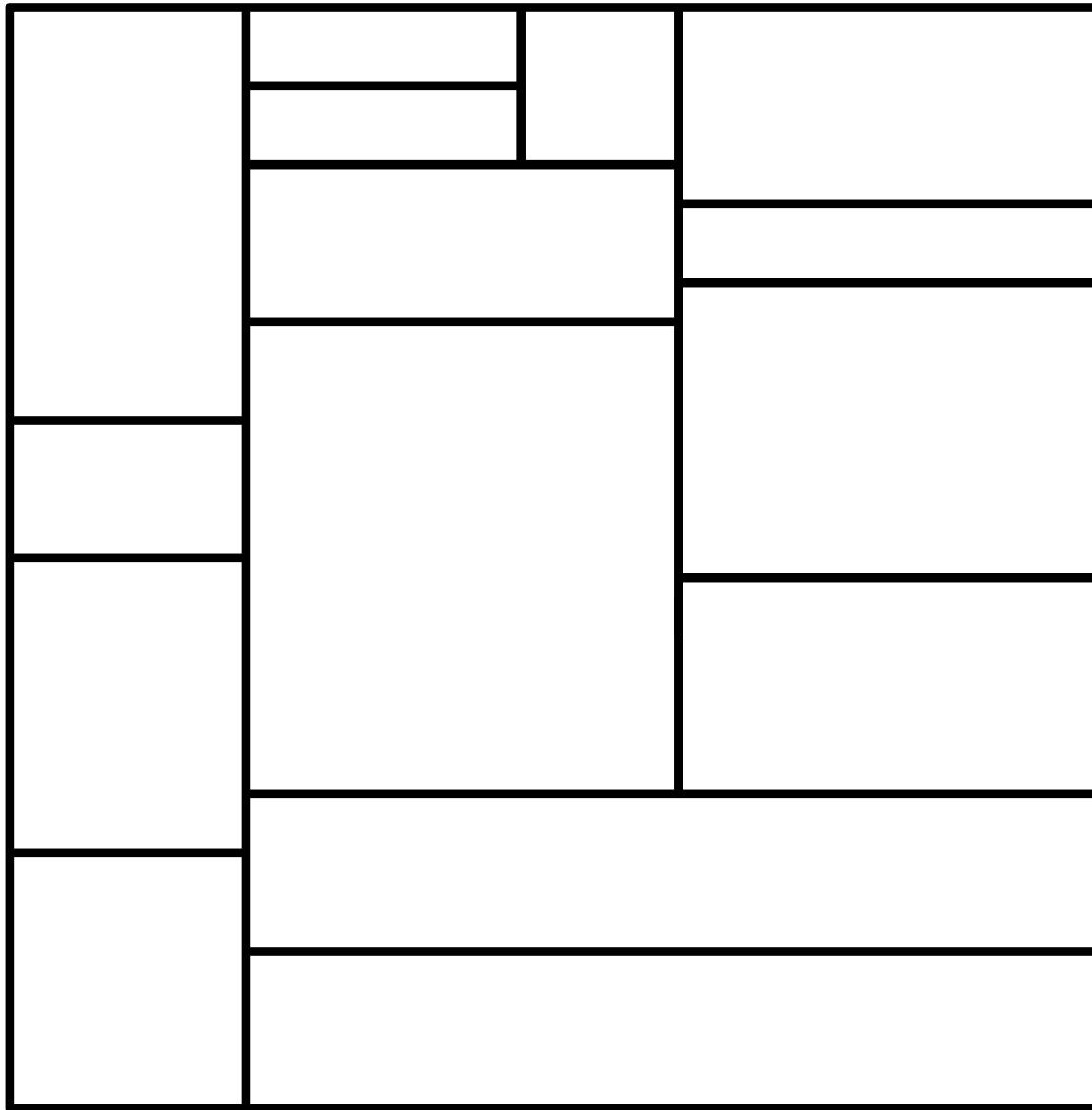
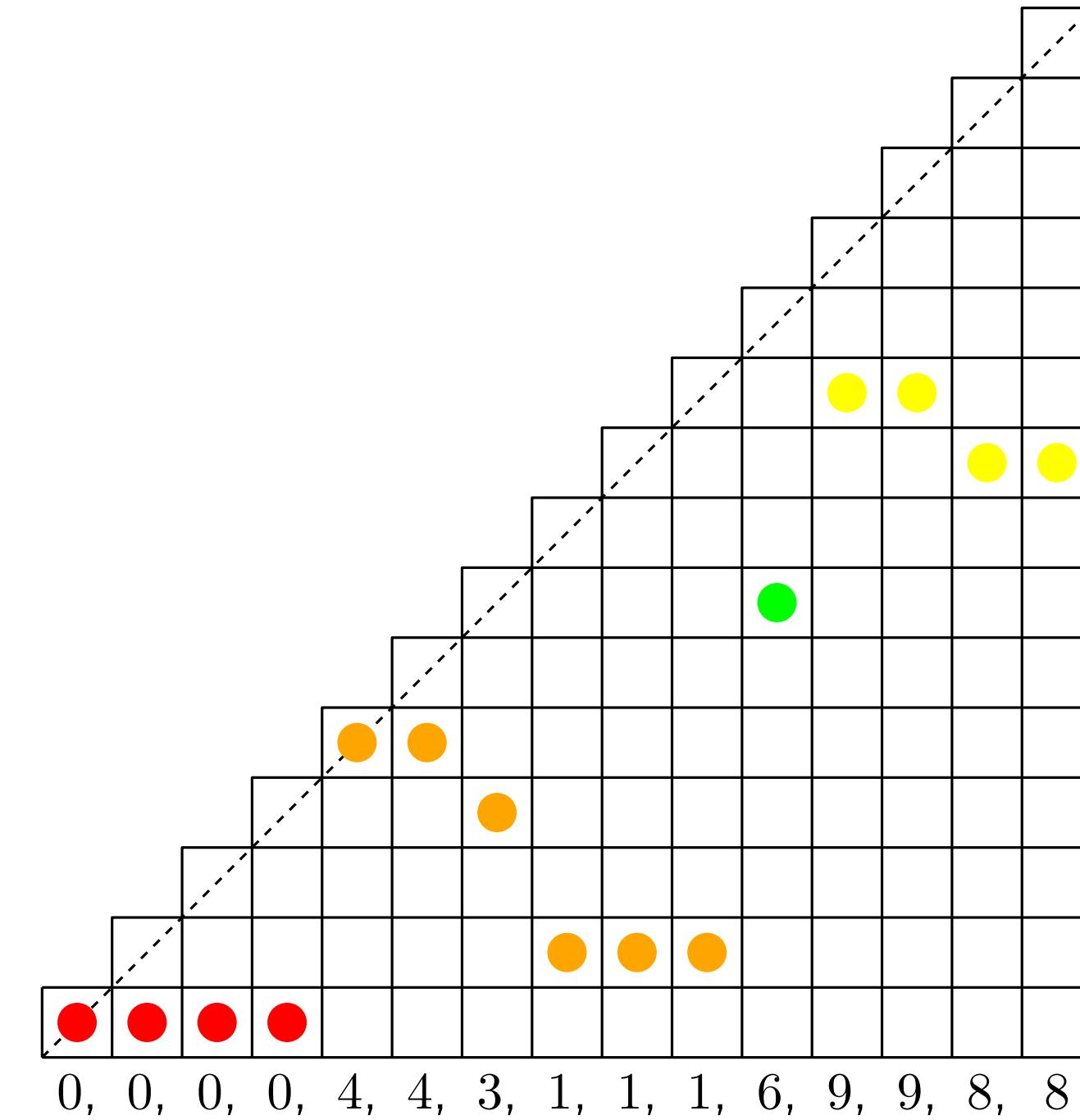
$|R_n^s(\top)| = |I_n(010, 101, 120, 201)|$, OEIS A279555 (Asinowski and P)

Proof: Bijection to inversion sequences



$$|R_n^s(\mathsf{T})| = |I_n(010, 101, 120, 201)|, \text{ OEIS A279555 (Asinowski and P)}$$

Proof: Bijection to inversion sequences



First geometric interpretation of sequence, sequence previously appeared in paper examining pattern avoidance in inversion sequences from Megan Martinez and Carla Savage (2018).

$I(010, 101, 120, 201)$, $I(011, 201)$, and \top –avoiding rectangulations

Theorem (Martinez & Savage 2018, Callan & Mansour 2023, Asinowski & P 2025)

$I(010, 101, 120, 201)$, $I(010, 100, 120, 210)$, $I(010, 110, 120, 210)$, and \top –avoiding rectangulations are all enumerated by A279555.

$I(010, 101, 120, 201)$, $I(011, 201)$, and \top –avoiding rectangulations

Theorem (Martinez & Savage 2018, Callan & Mansour 2023, Asinowski & P 2025)

$I(010, 101, 120, 201)$, $I(010, 100, 120, 210)$, $I(010, 110, 120, 210)$, and \top –avoiding rectangulations are all enumerated by A279555.

Conjecture (Yan & Lin 2020, Callan & Mansour 2023, Pantone 2024)

$I(011, 201)$ and $I(011, 210)$ are also enumerated by A279555.

Generating trees for $I(010, 101, 120, 201)$ and $I(011, 201)$ (Pantone, 2024)

Generating tree for $I(010, 101, 120, 201)$ (T1):

Root : $(1, 0)$.

Succession rules : $(k, \ell) \rightarrow (1, k-1), (2, k-2), \dots, (k, 0);$ $(*)$
 $(k+1, \ell), (k+1, \ell-1), \dots, (k+1, 0).$ $(**)$

Generating tree for $I(011, 201)$ (T2):

Root : $(1, 0)$.

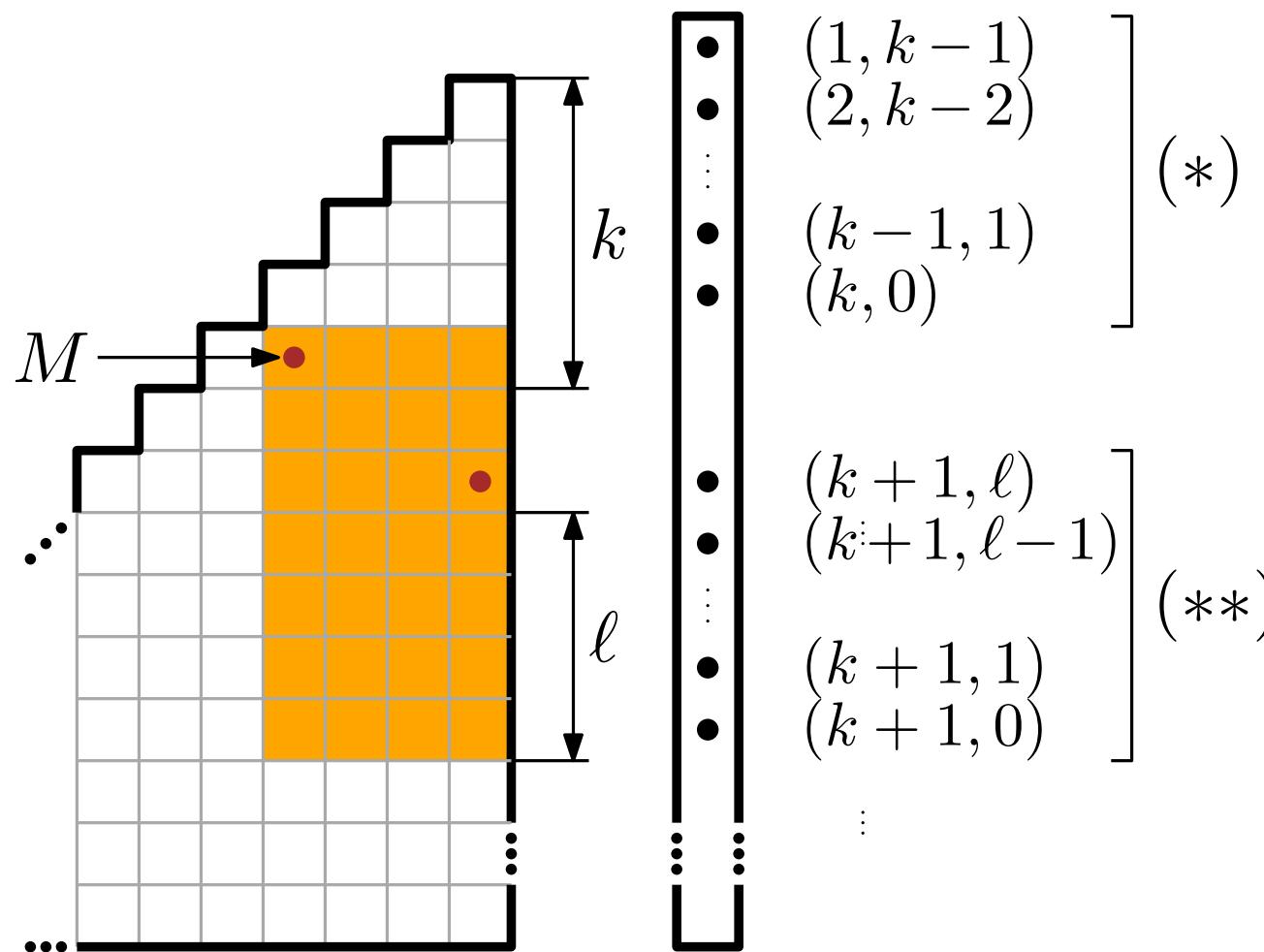
Succession rules : $(k, \ell) \rightarrow (1, k+\ell-1), (2, k+\ell-2), \dots, (k, \ell);$ $(*)$
 $(k+1, \ell-1), (k+1, \ell-2), \dots, (k+1, 0);$ $(**)$
 $(k+1, 0).$ $(***)$

Here, k is the *bounce* defined as $n - M$, where n is the length and M is its maximal value;
 ℓ in T1 is the number of admissible values j such that $0 < j < e_n$,
 ℓ in T2 is the number of admissible values j such that $0 < j < M$.

T1: Generating tree for $I(010, 101, 120, 201)$ and \top –avoiding rectangulations

Root : $(1, 0)$.

Succession rules : $(k, \ell) \rightarrow (1, k-1), (2, k-2), \dots, (k, 0); \quad (*)$
 $(k+1, \ell), (k+1, \ell-1), \dots, (k+1, 0). \quad (**)$



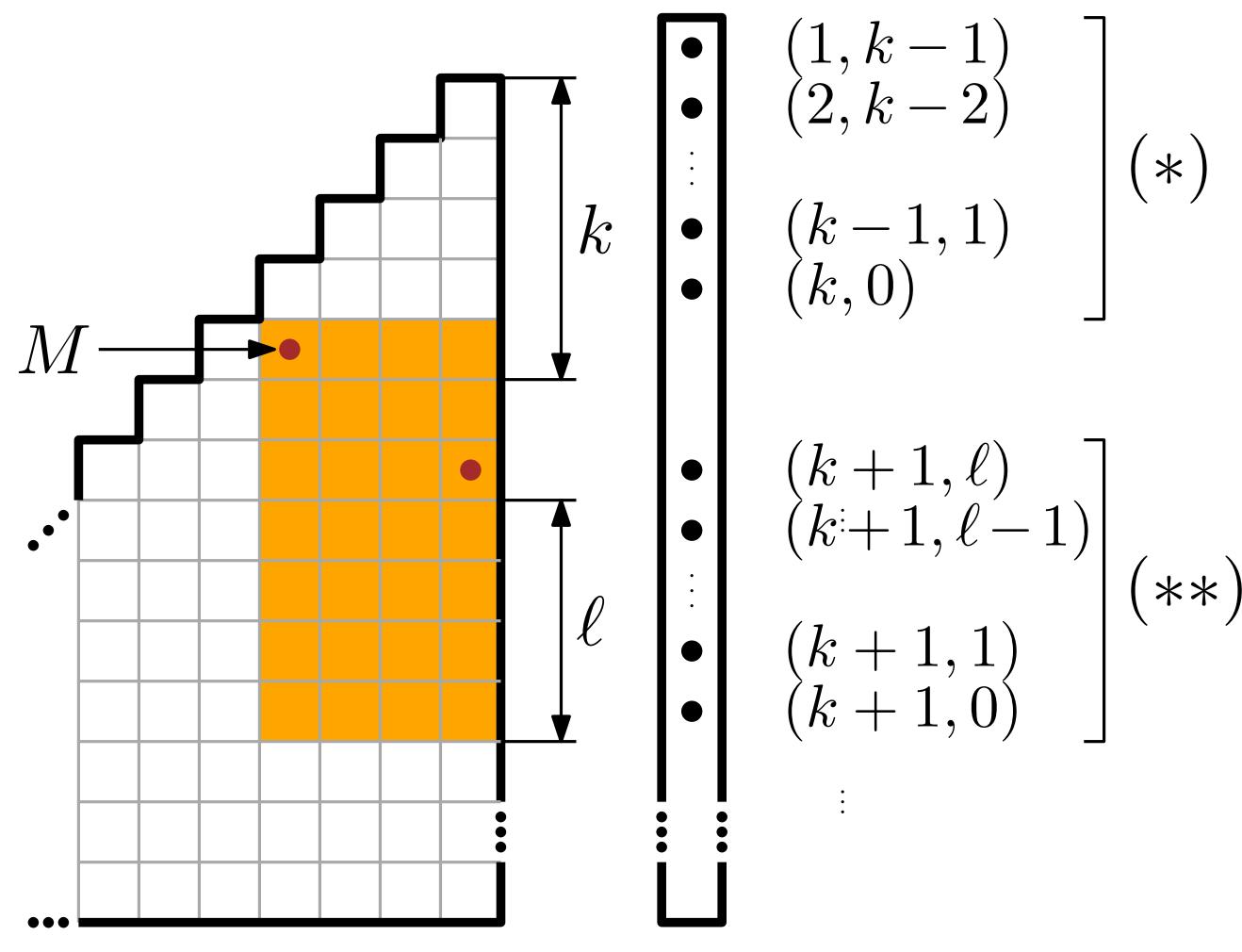
$k = n - M$ bounce

ℓ admissible values j , $0 < j < e_n$.

T1: Generating tree for $I(010, 101, 120, 201)$ and \top -avoiding rectangulations

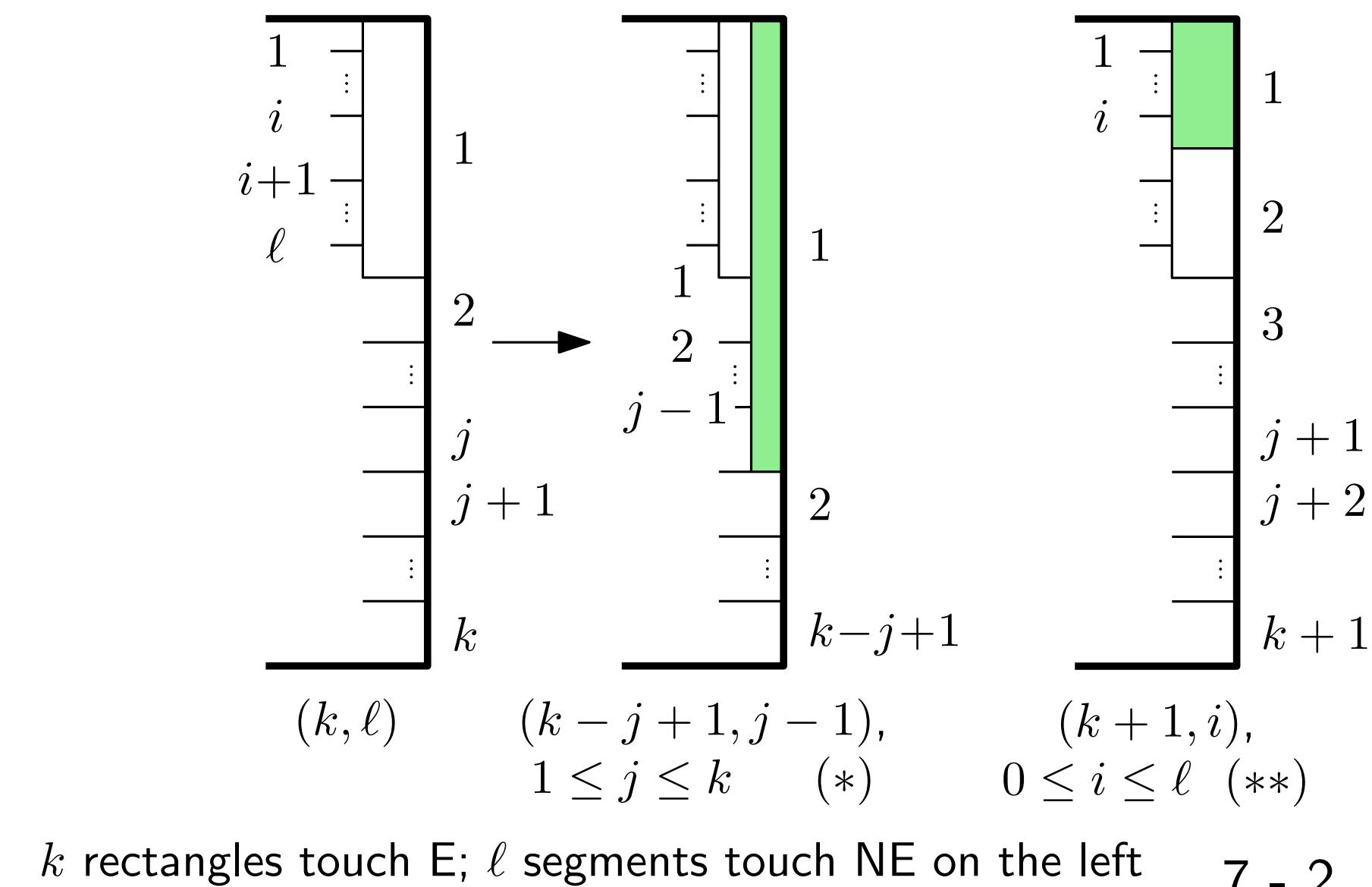
Root : $(1, 0)$.

Succession rules : $(k, \ell) \rightarrow (1, k-1), (2, k-2), \dots, (k, 0); \quad (*)$
 $(k+1, \ell), (k+1, \ell-1), \dots, (k+1, 0). \quad (**)$

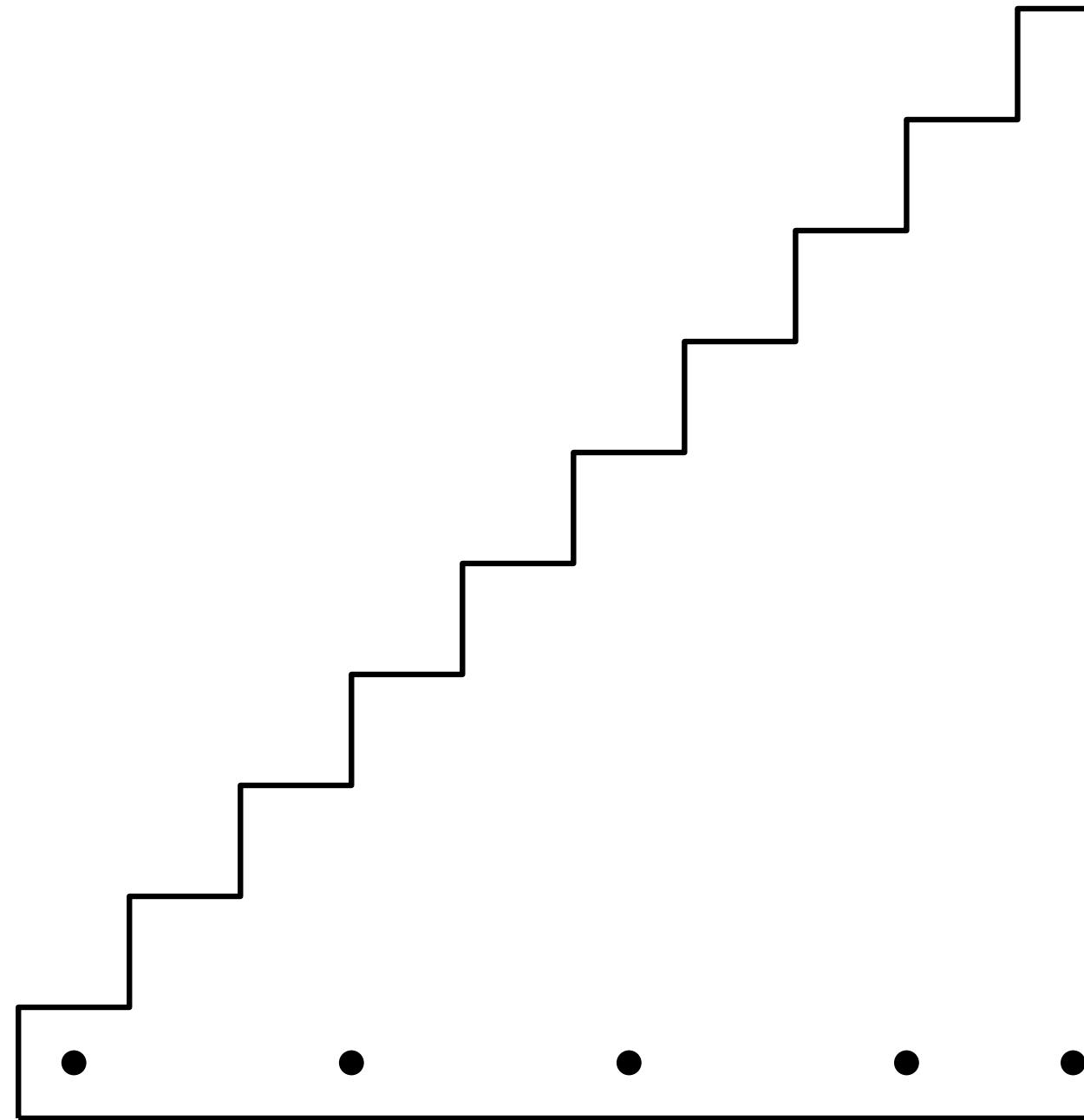


$k = n - M$ bounce

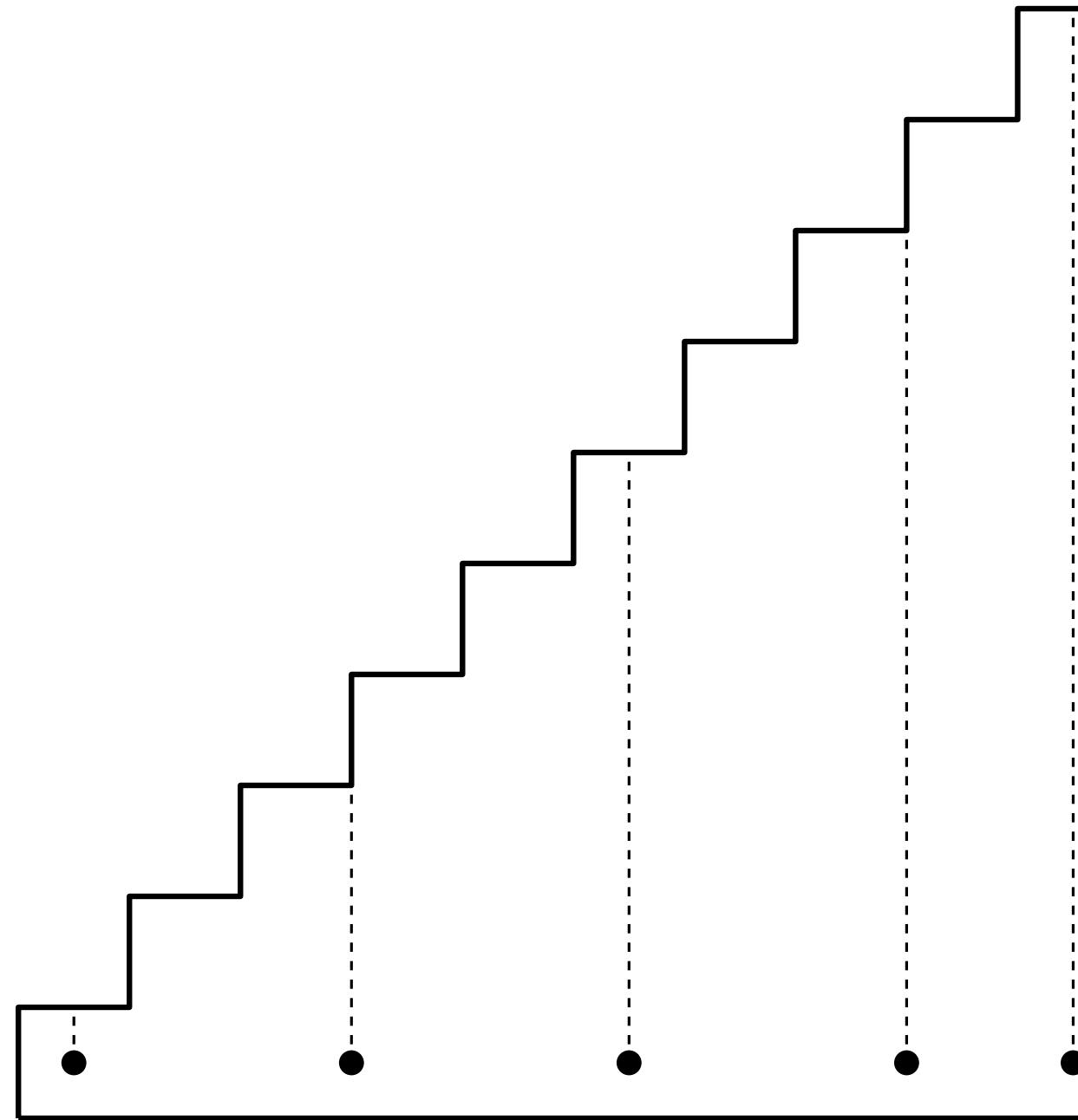
ℓ admissible values j , $0 < j < e_n$.



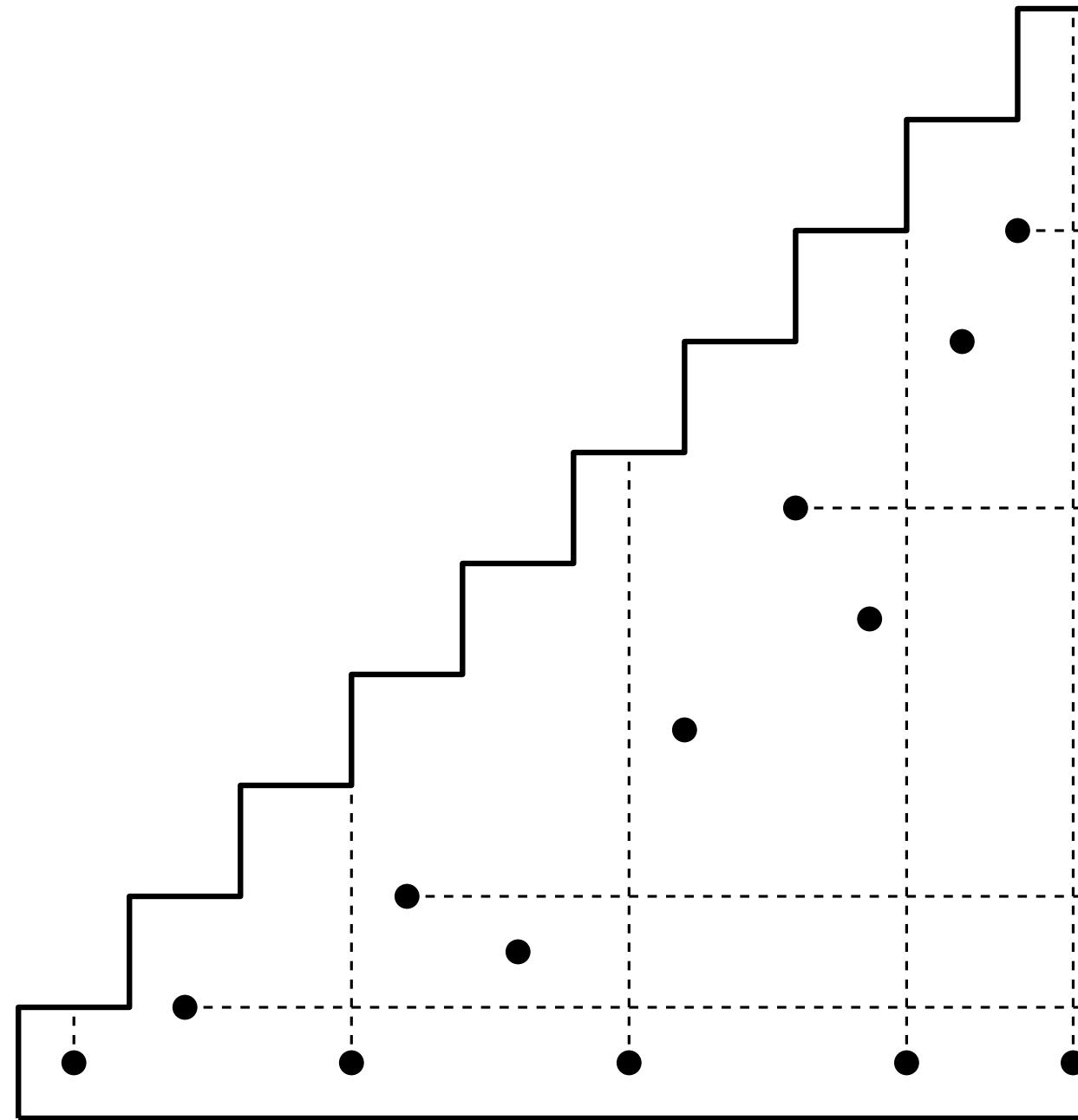
T2: Generating tree for $I(011, 201)$ and \perp -avoiding rectangulations



T2: Generating tree for $I(011, 201)$ and \perp -avoiding rectangulations



T2: Generating tree for $I(011, 201)$ and \perp -avoiding rectangulations

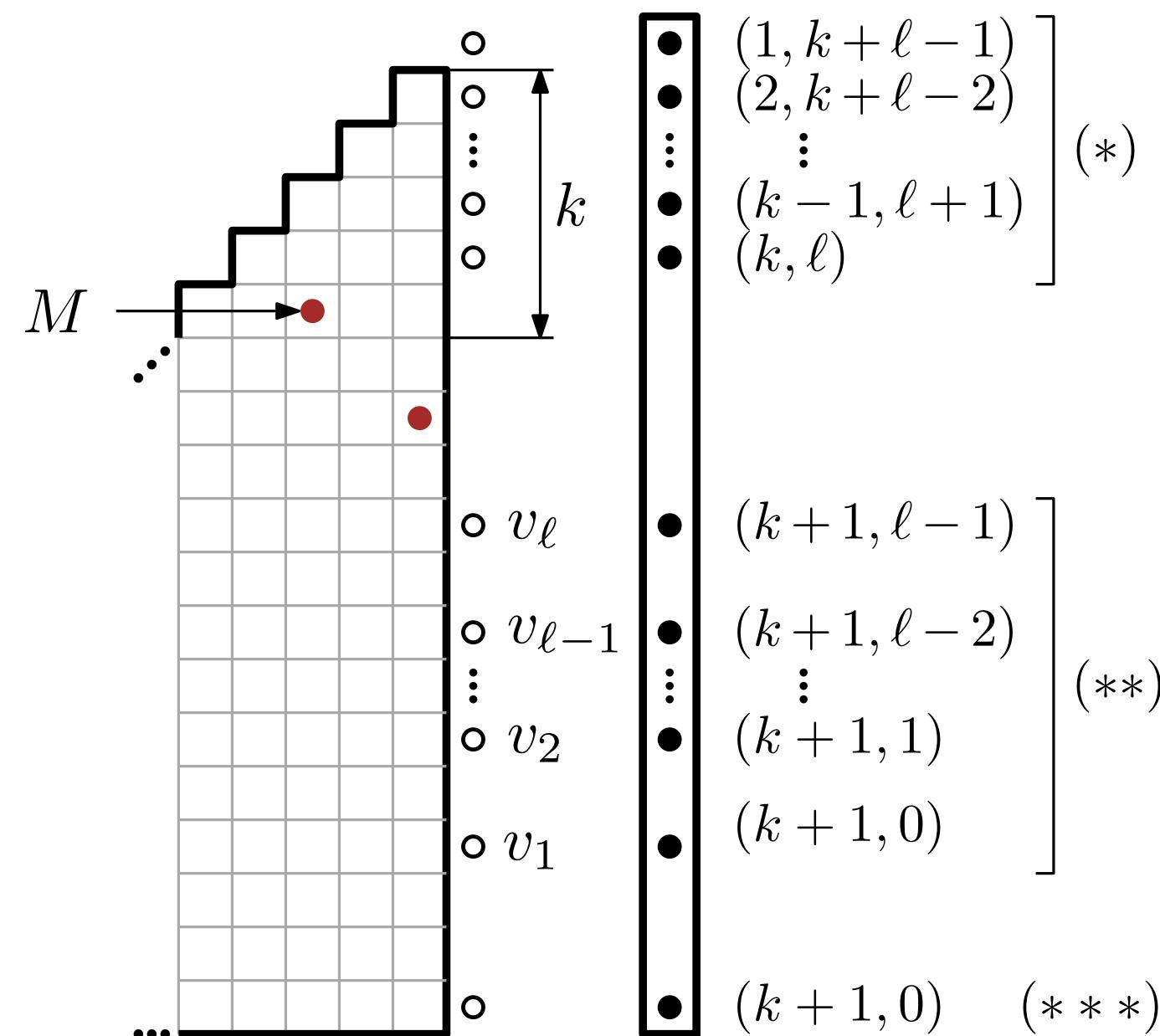


T2: Generating tree for $I(011, 201)$ and \perp -avoiding rectangulations

Root : $(1, 0)$.

Succession rules : $(k, \ell) \rightarrow$

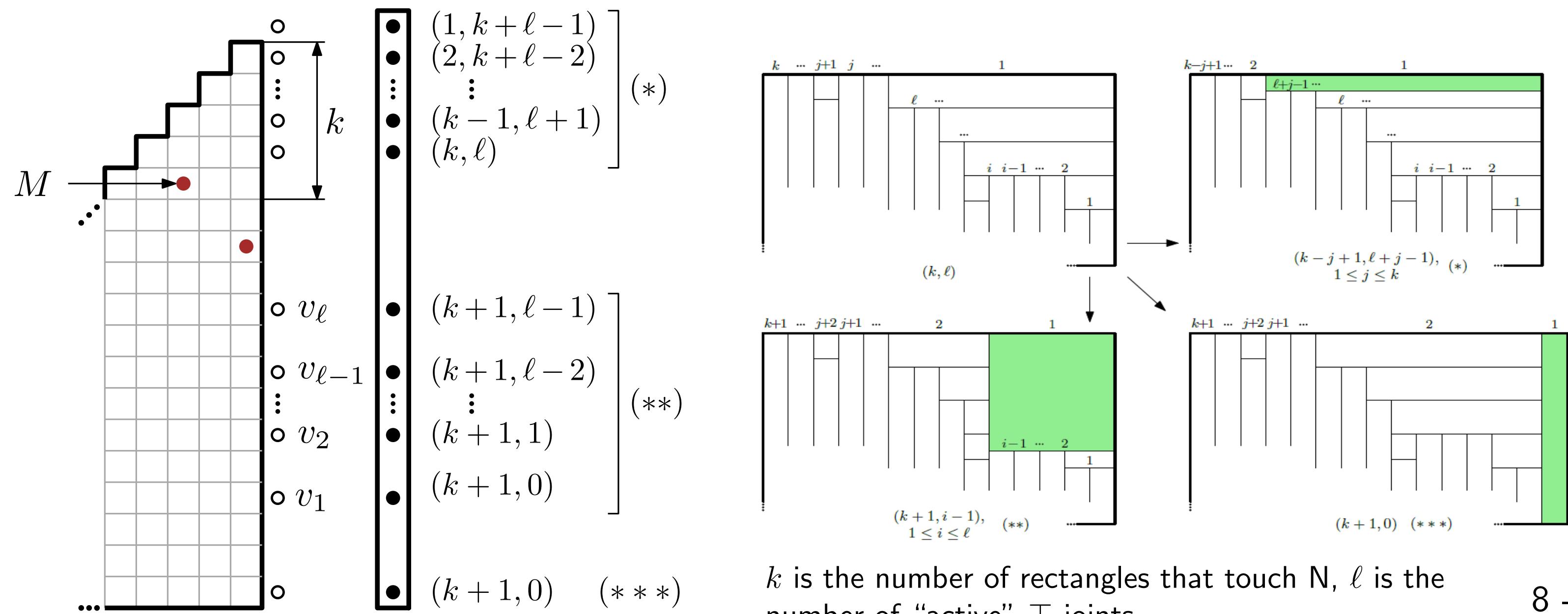
$(1, k + \ell - 1), (2, k + \ell - 2), \dots, (k, \ell);$	$(*)$
$(k + 1, \ell - 1), (k + 1, \ell - 2), \dots, (k + 1, 0);$	$(**)$
$(k + 1, 0).$	$(***)$



T2: Generating tree for $I(011, 201)$ and \perp -avoiding rectangulations

Root : (1, 0).

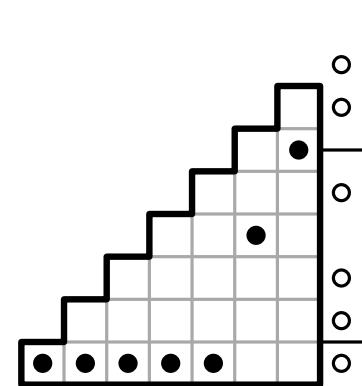
$$\begin{aligned}
 \text{Succession rules : } \quad (k, \ell) \quad &\longrightarrow \quad (1, k + \ell - 1), (2, k + \ell - 2), \dots, (k, \ell); \quad (*) \\
 &\quad (k + 1, \ell - 1), (k + 1, \ell - 2), \dots, (k + 1, 0); \quad (**) \\
 &\quad (k + 1, 0). \quad (***)
 \end{aligned}$$



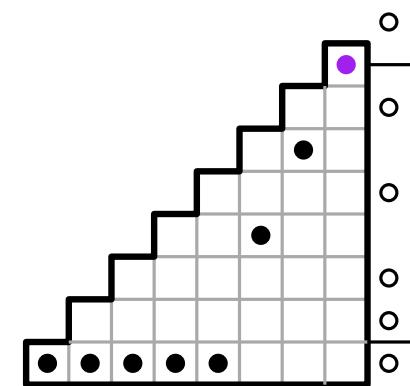
T2: Generating tree for $I(011, 201)$ and \perp -avoiding rectangulations

Root : $(1, 0)$.

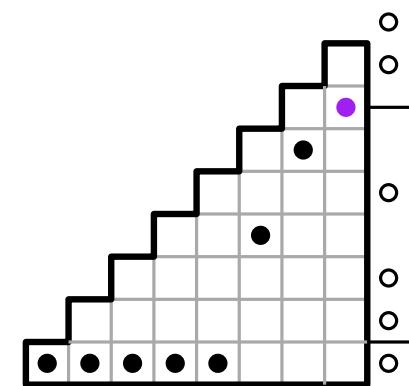
Succession rules : $(k, \ell) \rightarrow (1, k + \ell - 1), (2, k + \ell - 2), \dots, (k, \ell); \quad (*)$
 $(k + 1, \ell - 1), (k + 1, \ell - 2), \dots, (k + 1, 0); \quad (**)$
 $(k + 1, 0). \quad (***)$



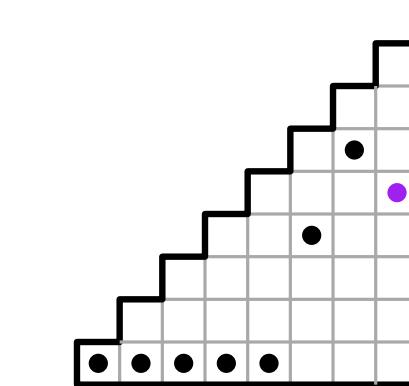
$(2, 3)$



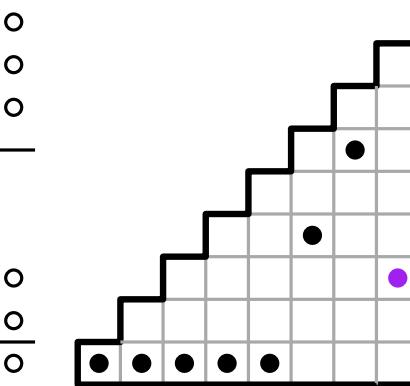
$(1, 4)$



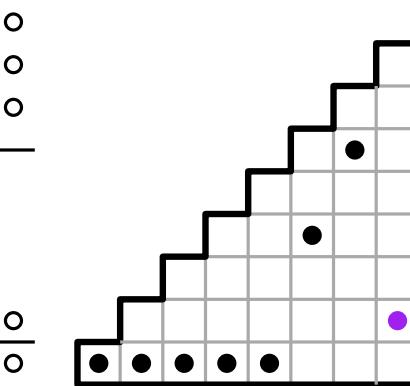
$(2, 3)$



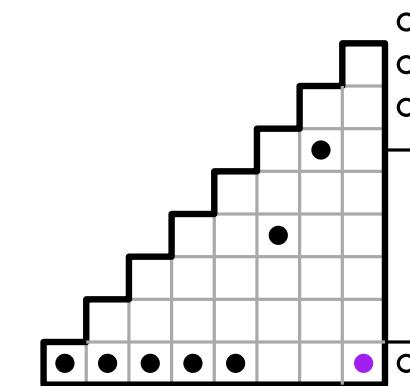
$(3, 2)$



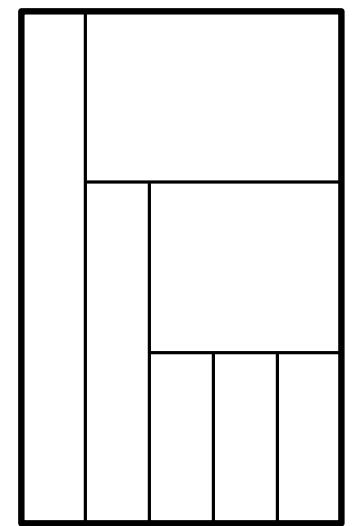
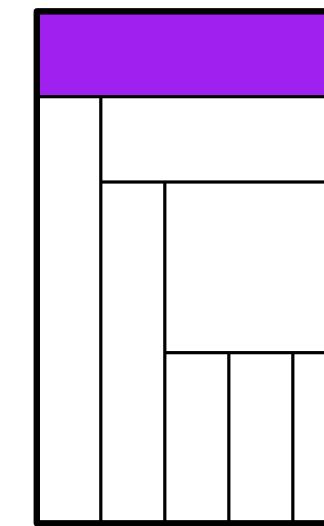
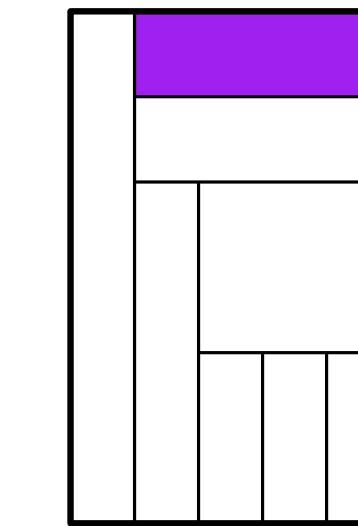
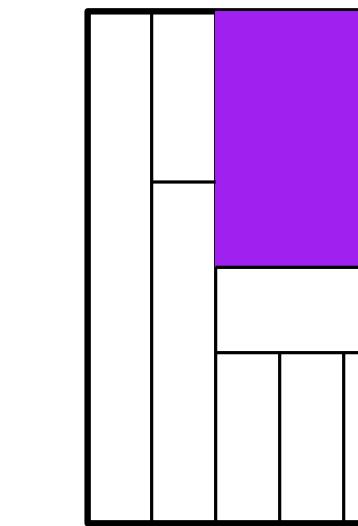
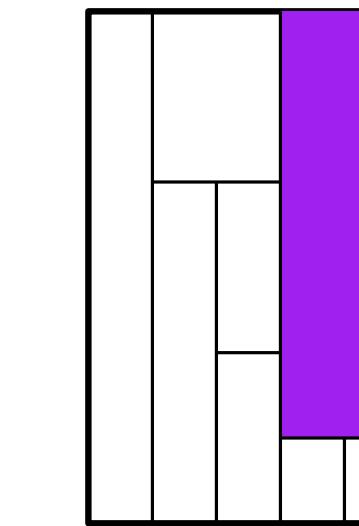
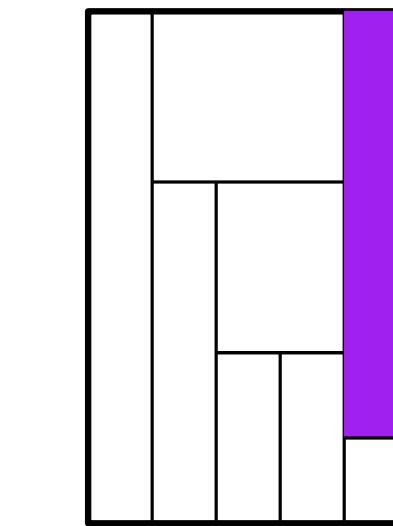
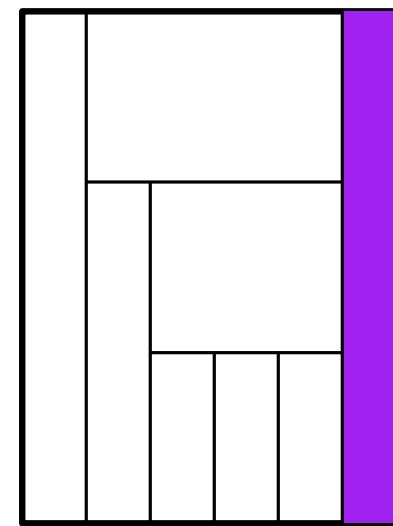
$(3, 1)$



$(3, 0)$



$(3, 0)$

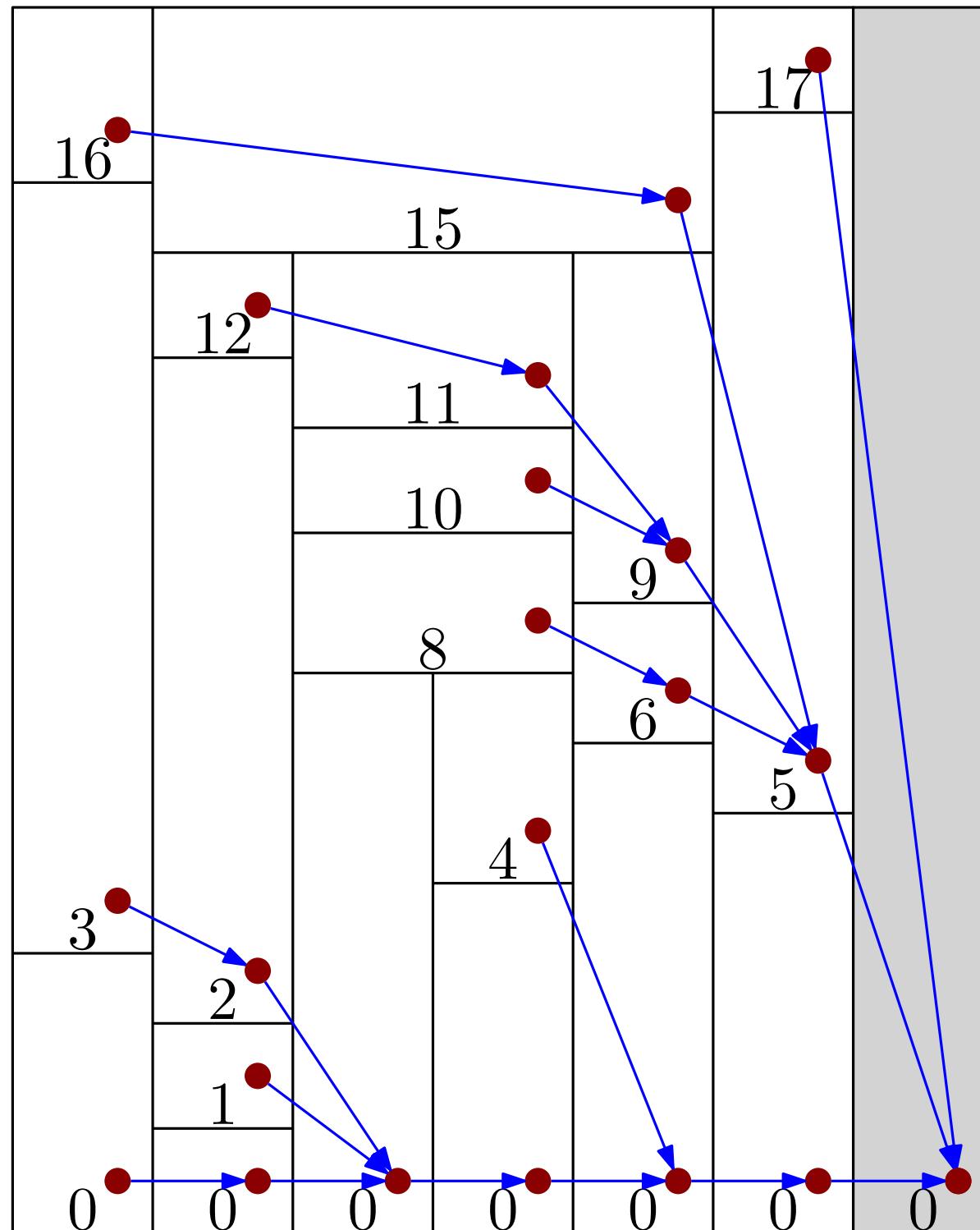
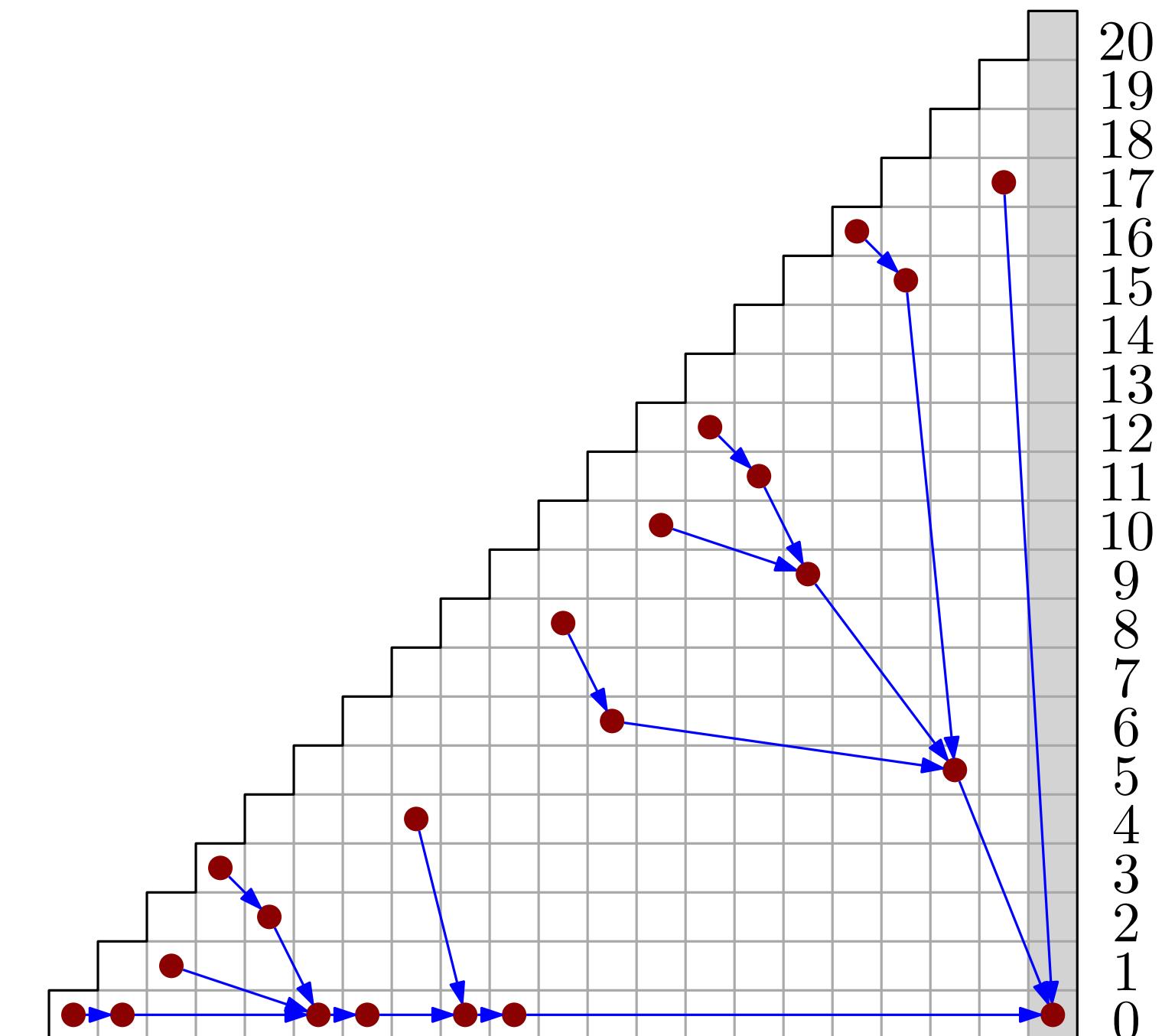


$(*)$

$(**)$

$(***)$ - 6

Explicit bijection between $I(011, 201)$ and \perp -avoiding rectangulations



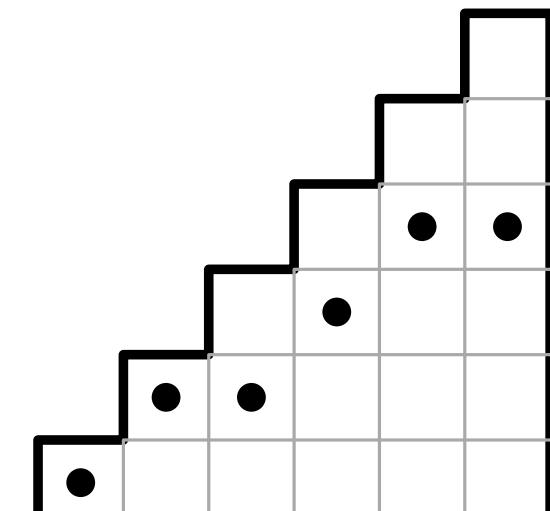
Theorem. For every $n \geq 1$:

1. We have $|I_n(010, 101, 120, 201)| = |I_n(011, 201)|$.
2. The quadruple of statistics (a, b, c, d) for $I_n(010, 101, 120, 201)$, $I_n(010, 110, 120, 210)$, and $I_n(010, 100, 120, 210)$, where

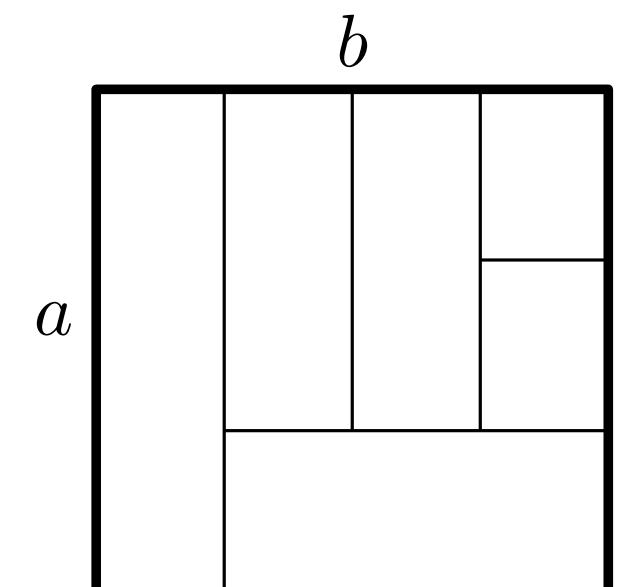
a is the number of 0 elements, b is the number of left-to-right-maxima,
 c is the bounce, d is the number of high elements.

matches the quadruple of statistics (x, y, z, t) for $I_n(011, 201)$, where

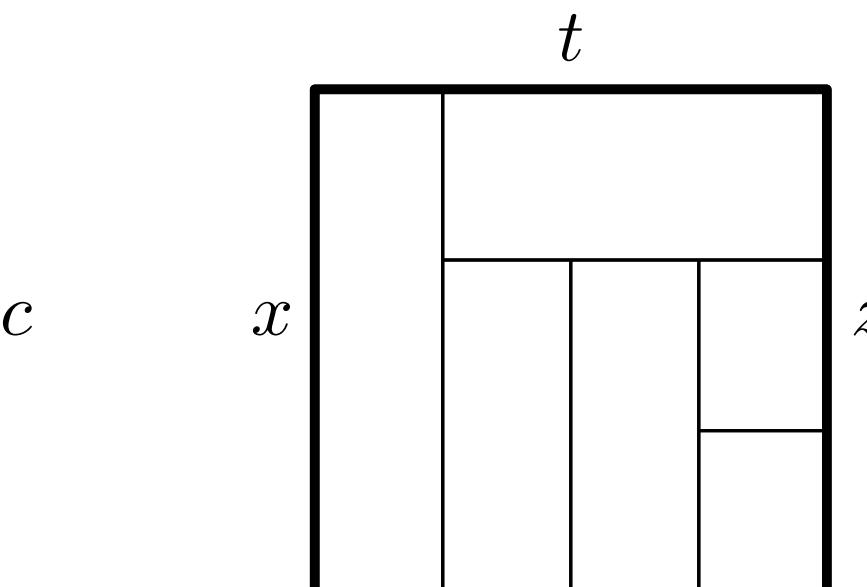
x is the number of high elements, y is the number of 0 elements,
 z is the number of right-to-left-minima, t is the bounce.



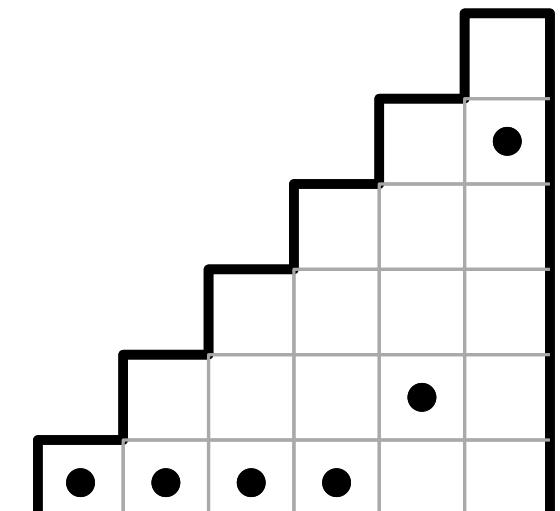
$I_n(010, 101, 120, 201)$



d



y



$I_n(011, 201)$

10

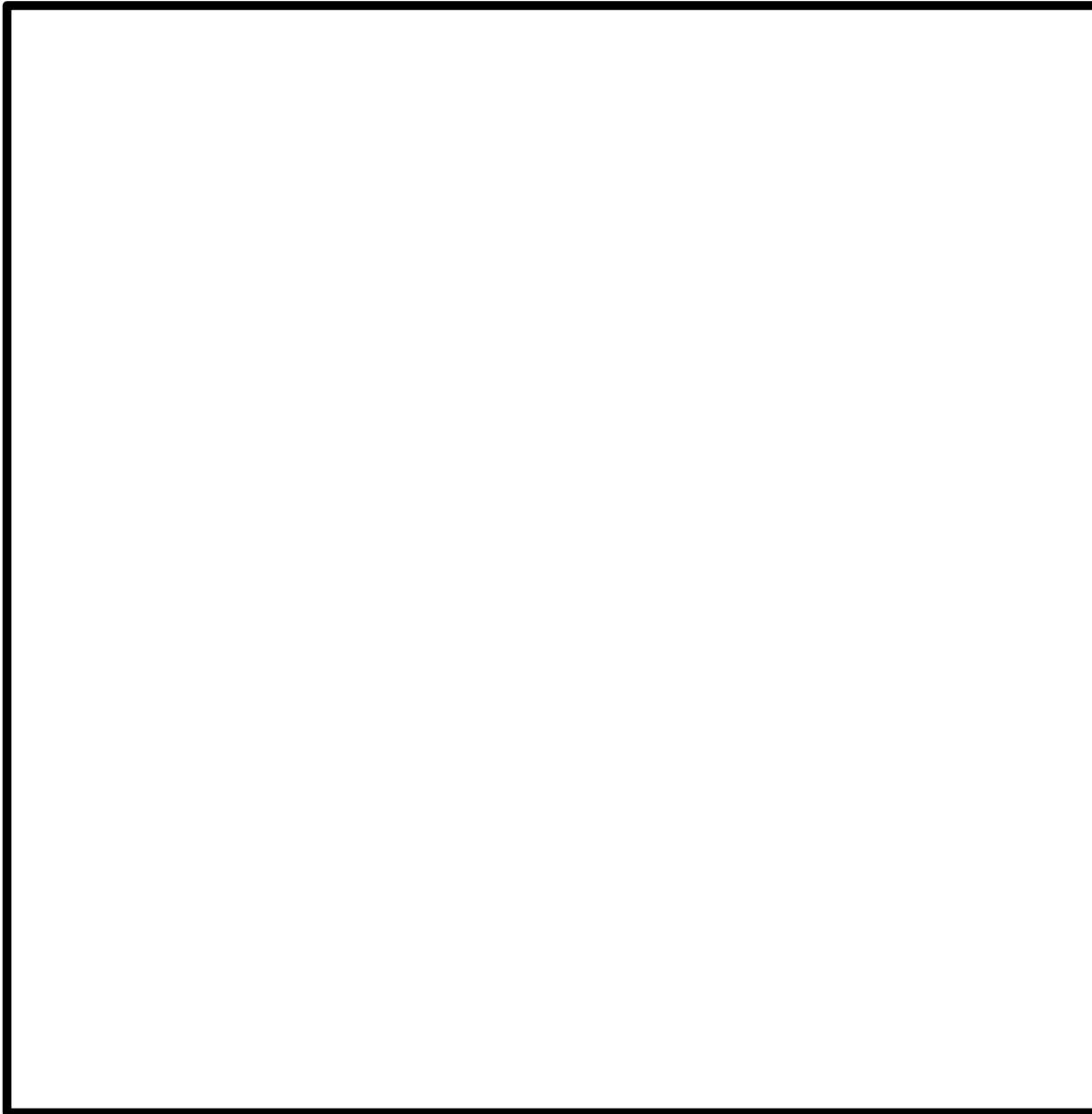
Weak Equivalence

Strong Equivalence

\top	$ R_n^w(\top) = C_n$	OEIS A279555
\top, \perp	$ R_n^w(\top, \perp) = 2^{n-1}$	OEIS A287709
\top, \vdash	$ R_n(\top, \vdash) = 2^{n-1}$	
\top, \perp, \vdash	$ R_n(\top, \perp, \vdash) = n$	
$\top, \perp, \vdash, \dashv$	$ R_n(\top, \perp, \vdash, \dashv) = 2$	

Proposition 3a: $|R_n^w(\vdash, \dashv)| = 2^{n-1}$

Proof: Enumerated by compositions of n .

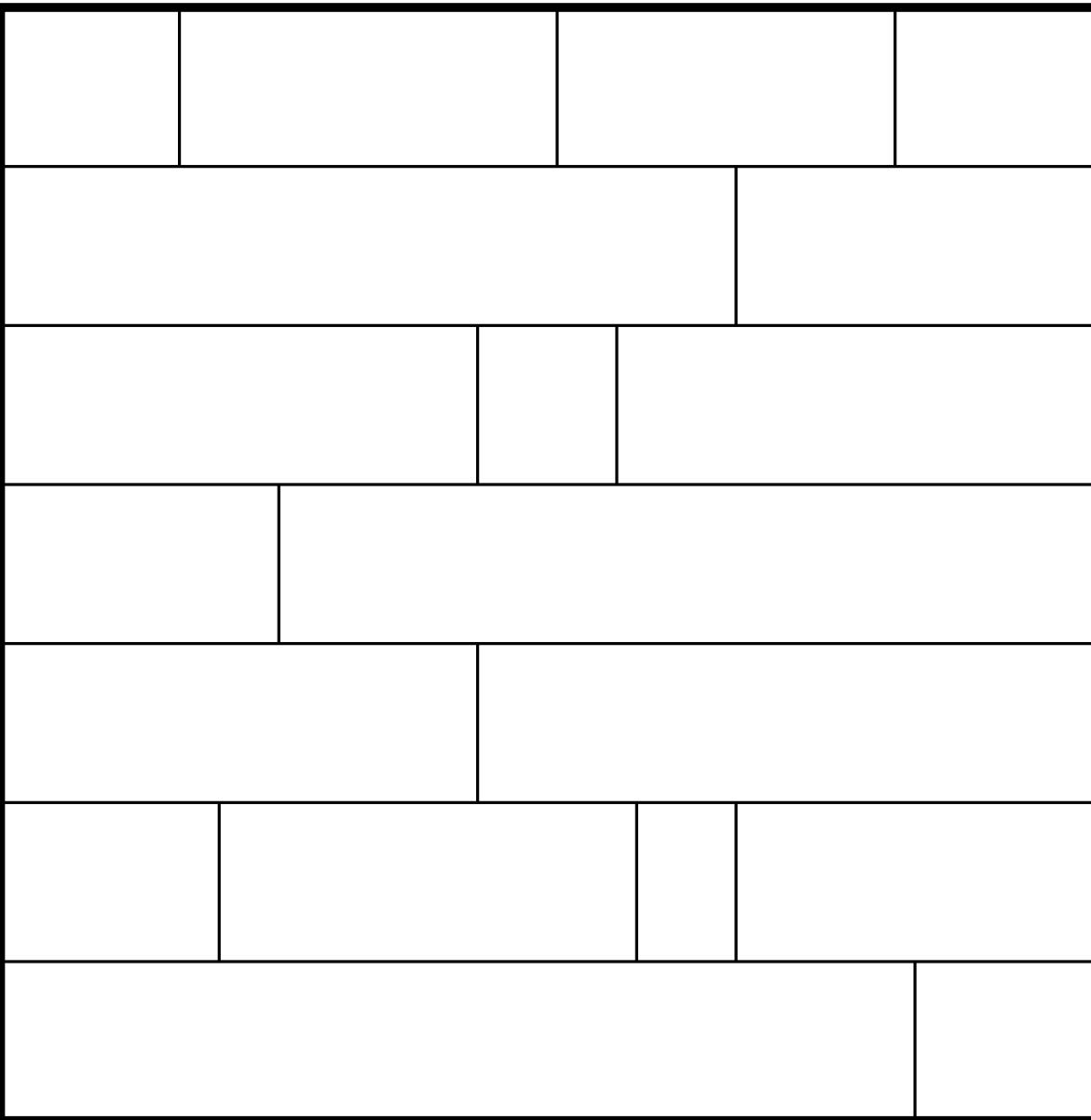


Proposition 3a: $|R_n^w(\vdash, \dashv)| = 2^{n-1}$

Proof: Enumerated by compositions of n .

Proposition 3a: $|R_n^w(\vdash, \dashv)| = 2^{n-1}$

Proof: Enumerated by compositions of n .



Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.

Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.

Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

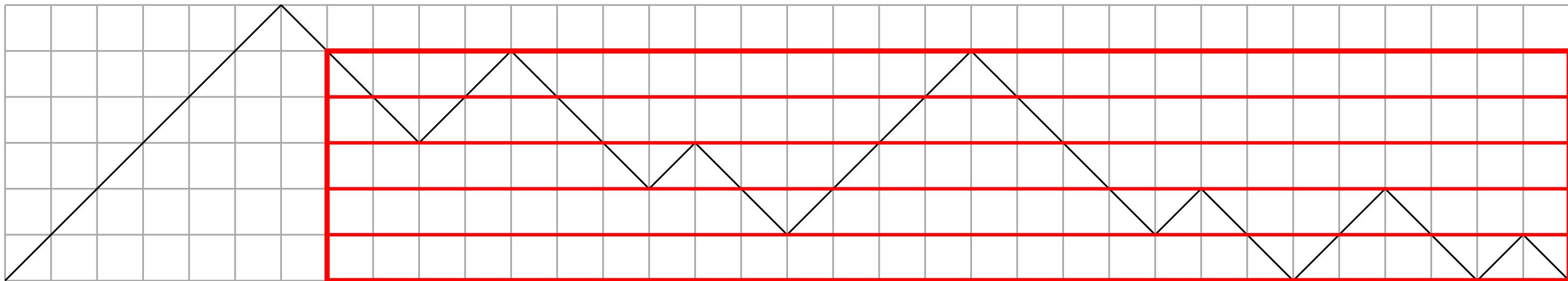
Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.

Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

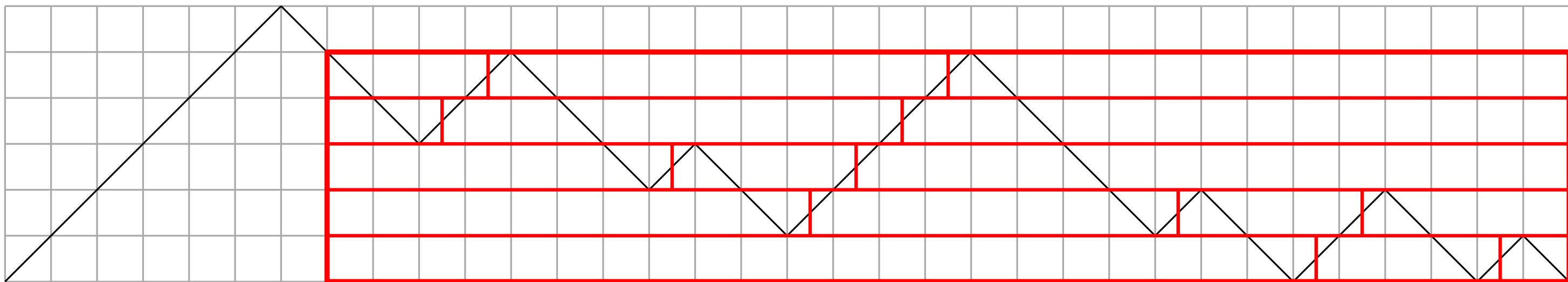
A *rushed Dyck path* is one which attains its maximum height on the initial ascent.



Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

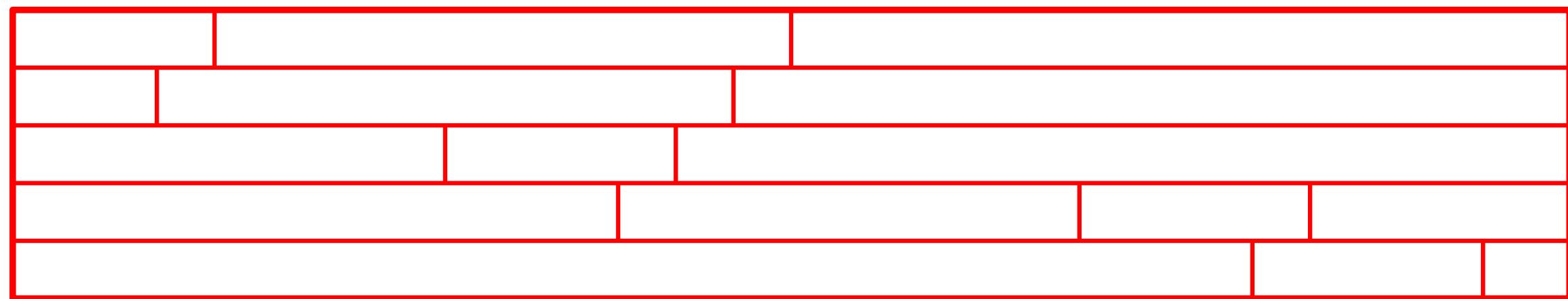
A *rushed Dyck path* is one which attains its maximum height on the initial ascent.



Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.



Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

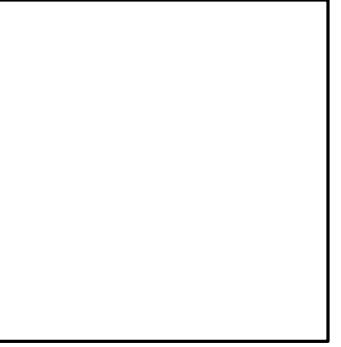
Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.

Asymptotics recently proven in a pre-print from Axel Bacher

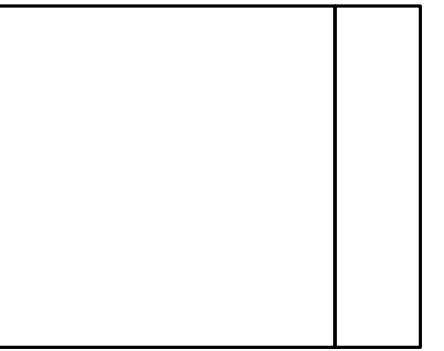
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



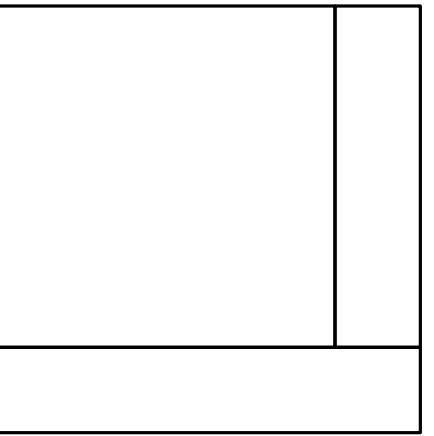
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



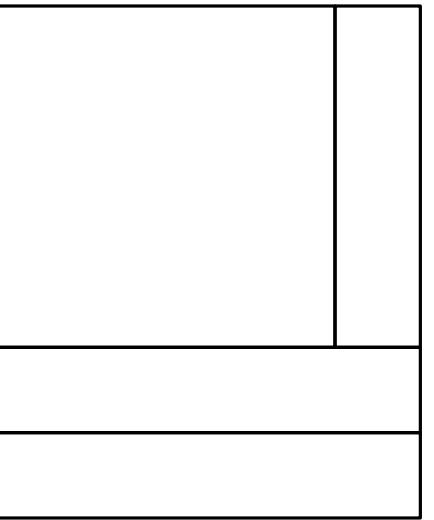
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



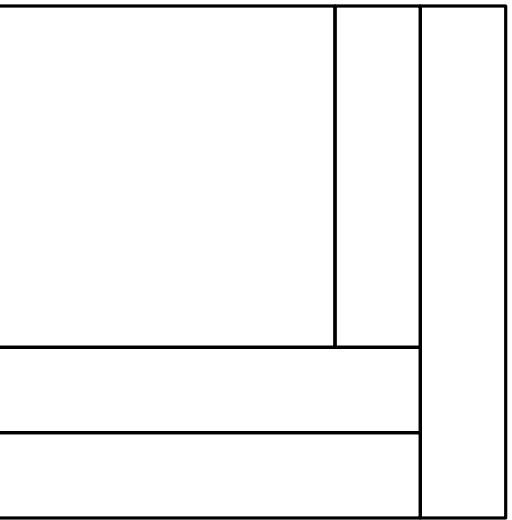
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



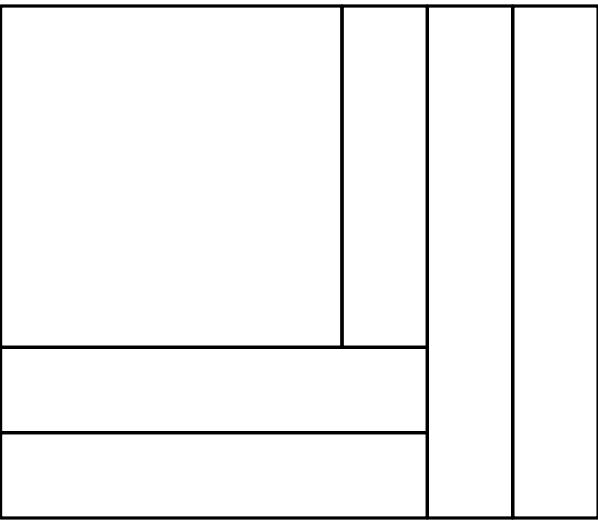
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



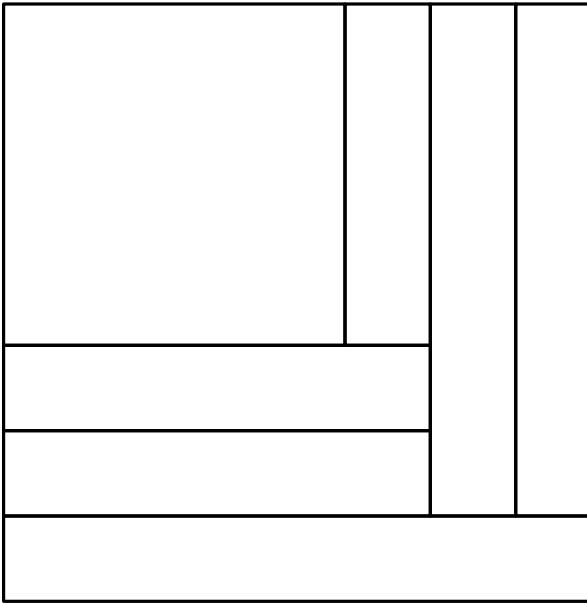
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



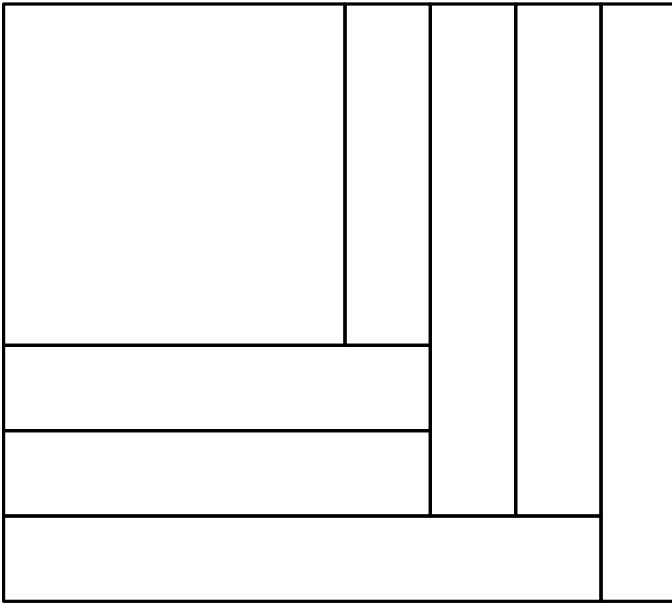
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



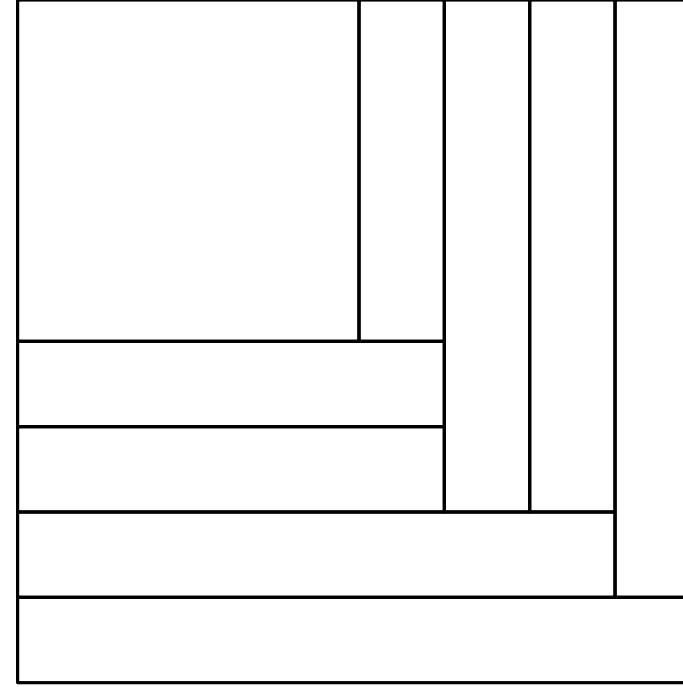
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



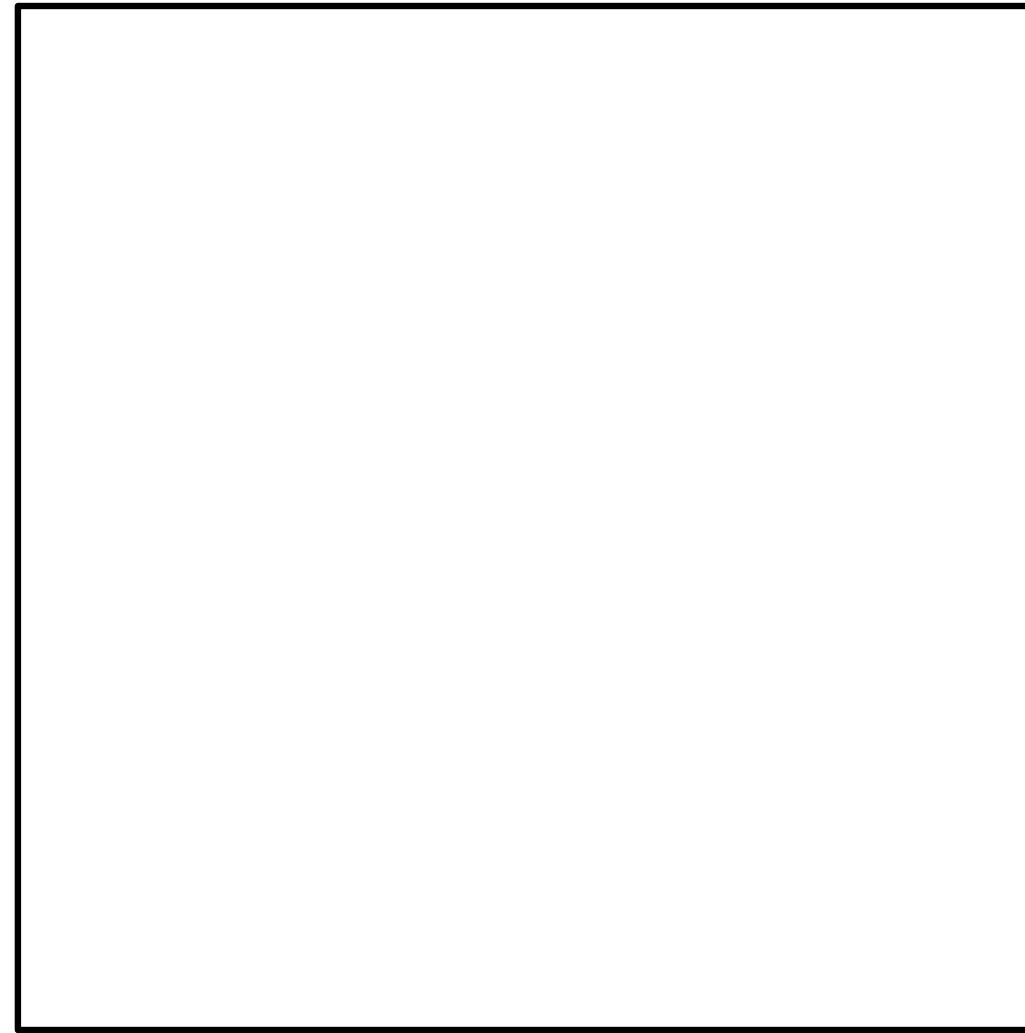
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



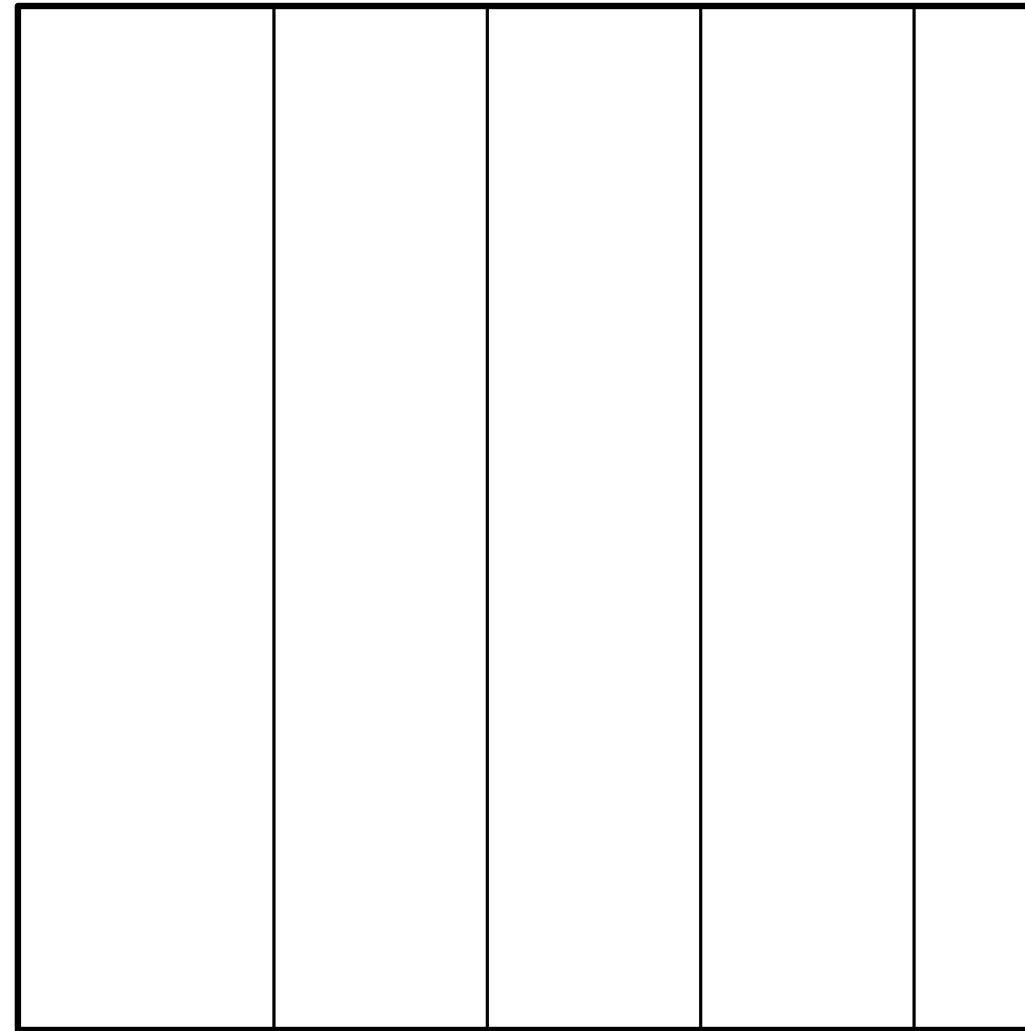
Observation 5: $|R_n(\top, \perp, \vdash)| = n$ and $|R_n(\top, \perp, \vdash, \dashv)| = 2$

Proofs: Construction of rectangulations



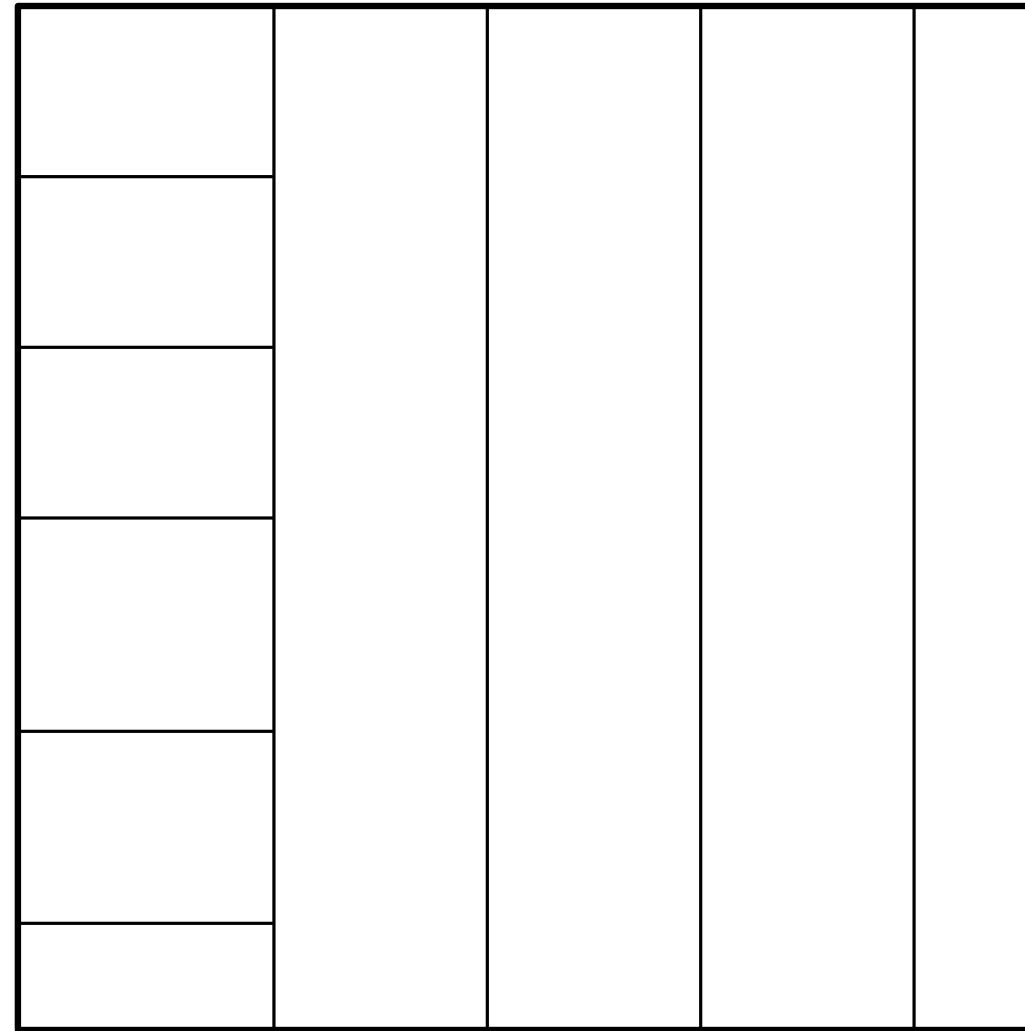
Observation 5: $|R_n(\top, \perp, \vdash)| = n$ and $|R_n(\top, \perp, \vdash, \dashv)| = 2$

Proofs: Construction of rectangulations



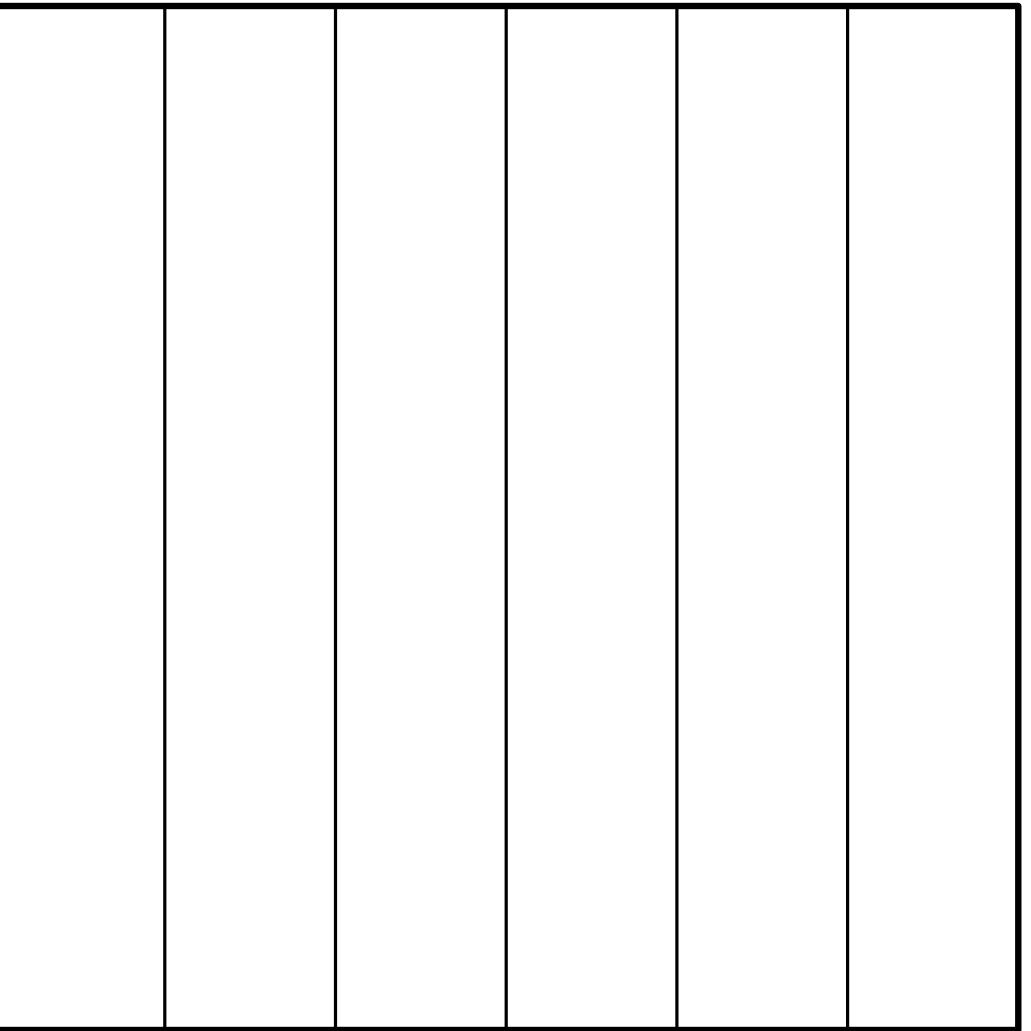
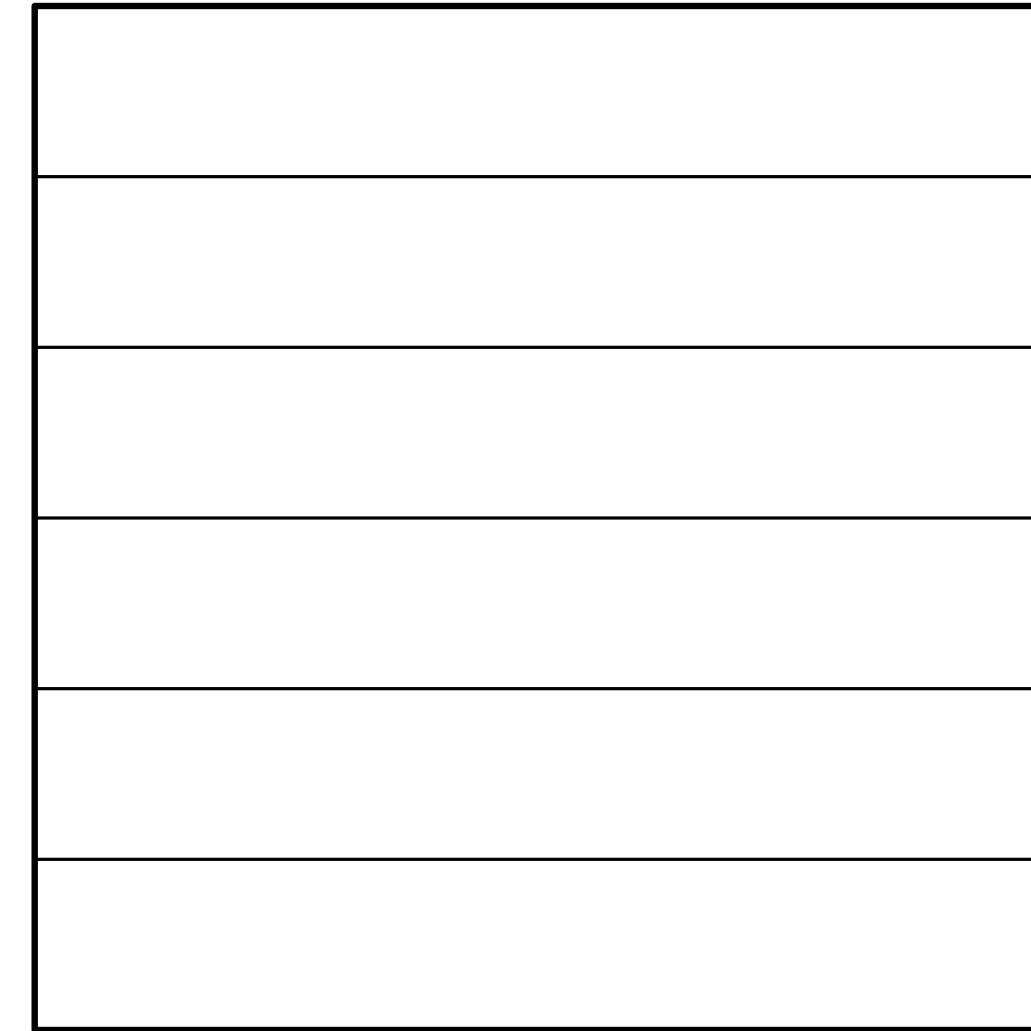
Observation 5: $|R_n(\top, \perp, \vdash)| = n$ and $|R_n(\top, \perp, \vdash, \dashv)| = 2$

Proofs: Construction of rectangulations



Observation 5: $|R_n(\top, \perp, \vdash)| = n$ and $|R_n(\top, \perp, \vdash, \dashv)| = 2$

Proofs: Construction of rectangulations



Summary

Weak Equivalence

Strong Equivalence

\top	$ R_n^w(\top) = C_n$	$ R_n^s(\top) = I_n(110, 210, 010, 120) $
\top, \perp	$ R_n^w(\top, \perp) = 2^{n-1}$	Bijection to rushed Dyck paths
\top, \vdash		$ R_n(\top, \vdash) = 2^{n-1}$
\top, \perp, \vdash		$ R_n(\top, \perp, \vdash) = n$
$\top, \perp, \vdash, \dashv$		$ R_n(\top, \perp, \vdash, \dashv) = 2$

Summary

Weak Equivalence

Strong Equivalence

\top	$ R_n^w(\top) = C_n$	$ R_n^s(\top) = I_n(110, 210, 010, 120) $
\top, \perp	$ R_n^w(\top, \perp) = 2^{n-1}$	Bijection to rushed Dyck paths
\top, \vdash		$ R_n(\top, \vdash) = 2^{n-1}$
\top, \perp, \vdash		$ R_n(\top, \perp, \vdash) = n$
$\top, \perp, \vdash, \dashv$		$ R_n(\top, \perp, \vdash, \dashv) = 2$

THANK YOU!